Известна история, как Эратосфен измерил при помощи геометрии размер Земли, просто заглянув в колодец. Он сравнил угол, под которым видно полуденное Солнце в Александрии и Сиене[62]
(современный Асуан), и оценил расстояние между ними по времени, за которое караван верблюдов может пройти из одного города в другой. Далее, зная размер Земли, можно пронаблюдать Луну из двух разных точек и вычислить расстояние до нее. Кроме того, этим же методом можно определить расстояние до Солнца.Каким образом? Около 150 года до нашей эры Гиппарх понял, что, когда Луна находится в первой или последней четверти, то есть освещена ровно наполовину, линия, проведенная от Луны к Солнцу, перпендикулярна линии от Земли к Луне. Значит, достаточно измерить угол между базовой линией Земля — Луна и линией Земля — Солнце, чтобы рассчитать, как далеко от нас находится Солнце. Его оценка этого расстояния — три миллиона километров в пересчете на современные единицы — оказалась слишком скромной: реальное расстояние составляет 150 миллионов километров. Оценка Гиппарха оказалась ошибочной потому, что он считал названный угол равным 87°, тогда как на самом деле он очень близок к прямому. Однако если воспользоваться более качественными инструментами, таким методом можно получить точную оценку.
На пути определения космических расстояний этим методом можно сделать еще один шаг. Мы можем воспользоваться орбитой Земли как базой и определить таким образом расстояние до какой-либо звезды. Земля за полгода проходит половину своей орбиты. Астрономы определяют
Еще в 1729 году Джеймс Брэдли пытался измерить параллакс одной из звезд, но его приборы не обладали для этого достаточной точностью. В 1838 году Фридрих Бессель воспользовался одним из гелиометров Фраунгофера — телескопом новой, весьма продвинутой конструкции появившимся уже после смерти Фраунгофера, — для наблюдения звезды 61 Лебедя. Он измерил ее параллакс, равный 0,31 угловой секунде (это сравнимо с углом, под которым виден теннисный мячик с расстояния 50 километров), и определил расстояние до этой звезды как 10,4 светового года, что очень близко к современному значению. Это расстояние — 100 триллионов километров — наглядно показывает, каким крошечным выглядит наш мир в сравнении с окружающей его Вселенной.
Но уменьшение масштабов человечества на этом не закончилось. Большинство звезд, даже в нашей собственной Галактике, не показывают измеримого параллакса, из чего следует, что они находятся от нас намного дальше, чем 61 Лебедя. Но если параллакс не удается зарегистрировать и измерить, метод триангуляции перестает работать. Конечно, космические аппараты могли бы обеспечить нам базис и подлиннее, но не на несколько порядков — а именно такая базовая линия потребовалась бы для измерения расстояния до галактик и далеких звезд. Астрономам, чтобы продолжить подъем по лестнице космических расстояний, необходимо было придумать что-то принципиально новое.
Работать приходится с тем, что есть под рукой. Единственное свойство звезды, которое всегда можно увидеть и измерить, — ее блеск, или видимая яркость. Эта характеристика звезды зависит от двух факторов: от ее реальной яркости — светимости — и от расстояния до нее. Яркость, подобно гравитации, уменьшается обратно пропорционально квадрату расстояния. Если звезда с той же светимостью, что и 61 Лебедя, имеет видимую яркость в девять раз ниже, то расстояние до нее должно быть втрое больше.
К несчастью, светимость зависит от типа звезды и ее размера, от того, какие именно в ней идут ядерные реакции. Чтобы метод определения расстояния по видимому блеску работал, нам обязательно нужна «стандартная свеча», или эталонный источник света, — тип звезд, светимость которых известна или может быть определена