Читаем Математика нуждается в систематизации полностью

Именно поэтому математика в своей основе имеет дело с реальными, а точнее, с природными целостными объектами, отображаемыми философскими понятиями и определениями, которые математика моделирует своими условными символами. С этими символами она и работает, создавая модели, реализуемые в будущих реальных объектах. Это прописные истины, над которыми математики, как правило, не задумываются. Они работают с веками созданной математикой и думают, что это так и должно быть. Однако задуматься бы надо. За многие годы известные математики напридумывали много такого, чего в природе не существует, следовательно, не имеет практического применения.

Вопрос № 2:

Известно ли математикам, что любая система, в том числе математическая, имеет всеобщие признаки?

Система первичных математических объектов, как и любая другая, имеет четыре признака:

Количественный – система имеет только четыре структурных образования от одного до четырех взаимосвязанных элементов в каждом;

Метрологический – каждый элемент системы имеет свою меру: реальную величину, изменяющуюся в идеальных пределах;

Качественный – в системе всегда имеется три вида структурных образования по три элемента в каждом: каждый последующий элемент содержит все предыдущие, каждая связь имеет положительное, нейтральное и отрицательное состояния, каждый предыдущий элемент содержит последующий;

Видовой – каждая система имеет четыре вида регулирования (управления): неопределенный – по одному критерию, неоднозначный – по двум критериям, определенный – по трем критериям, однозначный – по четырем критериям.

Вопрос № 3.

Знают ли математики, что их наука содержит систему противоречий?

Очевидно, знают, что есть некоторые противоречия, но какова их система, они вряд ли знают. А она основана на философском понятии «мера». Это единицы измерения, пределы изменчивости, границы перехода из одного состояния в другое (узловые соотношения меры) и отображения (философские отрицания).

Вопрос № 4:

Понимают ли математики, что первичные математические объекты не систематизированы?

У них нет особых претензий к ним: работают с тем, что имеет современная математика. Но при ближайшем рассмотрении претензии возникают к их физической сущности, признакам и определениям. Привязка математических объектов к реальным простейшим элементам Природы выявляет некоторые системные несоответствия. Требуется уточнение их физической природы, функций, структуры и степени определенности.

И здесь возникает целая серия вопросов.

Не совсем понятно, а точнее, совсем непонятно, какими общепринятыми и новыми условными обозначениями, и математическими названиями все это отобразить? В частности, бесконечные множества этих единичных элементов и переходы от одного к другому. Как образуются в энергетической среде космические вихри, которые создают ядра галактик? Как на этих ядрах возникают космические волны, которые превращаются в атомы? Как излучения атомов создают биологические вещества?

Признаки первичных математических объектов.

Даже беглого взгляда достаточно, чтобы понять, что совокупность первичных математических объектов не является системой. Почему это не система и что необходимо сделать, чтобы они стали таковой? В математической справочной литературе и в интернете с некоторой натяжкой можно найти четыре приведенных выше основных первичных структурных образования, но нигде не сказано определенно, сколько подчиненных элементов они должны иметь.

В соответствии с требованиями системности первый элемент (множество) должен быть целостным с единой структурой, второй (функции) должен иметь два элемента, третий (вектор) – три, а четвертый (тензор) – четыре.

1. Количественный признак. Из всех первичных математических объектов только множество соответствует системным требованиям, да и то в качестве неопределенности. Множество является не таким уж простым понятием, как это представляется. Это целая система понятий с разной степенью определенности от абсолютной неопределенности до однозначности.

Множество должно быть количеством чего-то, в данном случае, первичных объектов. как основополагающих: множества, комплексов, векторов и тензоров. Все четыре объекта, как единичные элементы, являются целостными образованиями и образуют соответствующие множества. Схематично это можно представить следующим образом (рис. 1):



Mm – множество; Mk – множество комплексов; Mr

– множество векторов; M? – множество тензоров.

Рисунок 1. Система множеств первичных математических объектов.

Последовательность внутренних множеств в первичных математических объектах представлена на рис. 2.



Рисунок 2. Последовательность внутренних множеств в первичных математических объектах.

Перейти на страницу:

Похожие книги

Абсолютное зло: поиски Сыновей Сэма
Абсолютное зло: поиски Сыновей Сэма

Кто приказывал Дэвиду Берковицу убивать? Черный лабрадор или кто-то другой? Он точно действовал один? Сын Сэма или Сыновья Сэма?..10 августа 1977 года полиция Нью-Йорка арестовала Дэвида Берковица – Убийцу с 44-м калибром, более известного как Сын Сэма. Берковиц признался, что стрелял в пятнадцать человек, убив при этом шестерых. На допросе он сделал шокирующее заявление – убивать ему приказывала собака-демон. Дело было официально закрыто.Журналист Мори Терри с подозрением отнесся к признанию Берковица. Вдохновленный противоречивыми показаниями свидетелей и уликами, упущенными из виду в ходе расследования, Терри был убежден, что Сын Сэма действовал не один. Тщательно собирая доказательства в течение десяти лет, он опубликовал свои выводы в первом издании «Абсолютного зла» в 1987 году. Терри предположил, что нападения Сына Сэма были организованы культом в Йонкерсе, который мог быть связан с Церковью Процесса Последнего суда и ответственен за другие ритуальные убийства по всей стране. С Церковью Процесса в свое время также связывали Чарльза Мэнсона и его секту «Семья».В формате PDF A4 сохранен издательский макет книги.

Мори Терри

Публицистика / Документальное