Читаем Математика. Поиск истины. полностью

Все многочисленные концепции причинности различным образом включают в себя идею связи (или сцепления), посредством которой причина порождает следствие. Шотландский философ Дэвид Юм пытался очистить причинность от какой бы то ни было метафизической подоплеки. В действительности он поставил под сомнение само понятие причинности. В работе «Исследование о человеческом познании» (1793) Юм утверждал:

Единственная непосредственная польза всех наук состоит в том, что они обучают нас управлять будущими явлениями и регулировать их с помощью причин. Обладающие сходством объекты всегда соединяются со сходными же — это мы знаем из опыта; сообразуясь с последним, мы можем поэтому определить причину как объект, за которым следует другой объект, причем все объекты, похожие на первый, сопровождаются объектами, похожими, на второй.

([30], с. 78.)

В приведенном отрывке слово «объект» лучше всего интерпретировать как «явление». Юм утверждает, что ситуация C и последующая ситуация E связаны между собой как причина и следствие

, если возникновение ситуации C (или похожей ситуации) всегда влечет за собой ситуацию E (или подобную ей) и если ситуация E возникает после наступления ситуации
С. В свое определение причинности Юм включил слова «похожий», «подобный», так как хотел сделать причинность экспериментально проверяемой и понимал, что определенная ситуация никогда не может повториться с абсолютной точностью.

Определив, что такое причинность, Юм приступил к критике этого понятия. По убеждению Юма сам по себе тот факт, что мы знаем о следовании события A за событием B

, даже если это следование многократно повторялось, отнюдь не доказывает, что и в будущем событие A неизменно будет следовать за событием B. Юм приходит к выводу, что наша вера в причинность не более, чем привычка, и с полным основанием утверждает, что привычка не может служить подходящей основой для веры.

Джон Стюарт Милль, наиболее известный английский философ XIX в., поддержав отрицание причинности Юмом, добавил несколько собственных идей. В сочинений «Система логики» (1843) Милль так изложил свою концепцию причинности: «Закон причинности, главный столп, на который опирается наука, есть не что иное, как знакомая истина об обнаруживаемой путем наблюдения неизменности следования между каждым природным фактом и каким-то другим фактом, ему предшествующим». Таким образом, Милль, подобно Юму, усматривает сущность причинности в «неизменности следования» и, подобно Юму, подводит под причинность эмпирический базис. Милль лишает причинность логической необходимости, отказываясь от идеи принуждении. Он анализирует условия, при которых, по его мнению, можно предположить существование причинно-следственных связей между двумя событиями: событие-причина пространственно близко к событию-следствию; следствие во времени происходит непосредственно после причины; событие-следствие имеет место всегда, когда происходит событие-причина. Милль не опровергает явно высказывание Юма, что причинность — всего лишь привычка мышления. Для Милля причинность — это обобщение эмпирических данных. Индукция служит основой некоторых обобщений, в частности законов природы. Милль рассматривает также методы, которые позволяют выявить причинную связь, например метод различий:

Если в данном случае, когда происходит исследуемое явление, и в другом, когда оно не происходит, все условия одинаковы, за исключением одного, которое выполняется только в первом случае, то единственное условие, которым отличаются два случая, и есть причина (или неотъемлемая часть ее) указанного явления.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука
Хаос и структура
Хаос и структура

"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число."Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."

Алексей Федорович Лосев

Математика / Философия / Образование и наука