Природа проста и в высшей степени упорядочена, все ее явления регулярны и необходимы. Она действует в полном соответствии с совершенными и незыблемыми математическими законами. Божественный разум — источник рационального в природе. При сотворении мира Бог вложил в него строгую математическую необходимость, которую представители человеческого рода, хотя их разум создан по образу и подобию божьему, постигают лишь ценой значительных усилий. Математическое знание не только абсолютно истинно, но и священно, как священна любая строка Библии. Более того, математическое знание превосходит Священное писание, ибо по поводу последнего существует много разногласий и споров, тогда как математические истины бесспорны. Исследование природы — занятие столь же благочестивое, как и изучение Библии: «То, как Господь Бог предстает перед нами в явлениях природы, достойно восхищения ничуть не в меньшей степени, чем его дух в священных строках Библии».
Хотя Декарт предпринял первые шаги к изучению законов движения, он не пытался всерьез заняться проблемами, возникшими в связи с утверждением гелиоцентрической теории. Согласно этой теории, Земля, вращаясь вокруг своей оси, одновременно обращается вокруг Солнца. Почему тела не срываются с движущейся Земли? Почему брошенные тела должны падать на Землю, если она не является центром Вселенной? Более того, все тела, в частности свободно брошенное тело, движутся так, будто Земля покоится. Чтобы объяснить все эти земные явления, требовались какие-то новые принципы движения.
Дерзкий новаторский подход Галилея, развитый его последователями, состоял в том, чтобы получить
Отметим, что формула компактна, точна и отличается количественной полнотой. При любом значении одной переменной (в нашем примере —
Следует подчеркнуть, однако, одно важное обстоятельство: эта математическая формула описывает то, что происходит, не объясняя причинной связи, т.е. ничего не говорит о том, почему мяч падает. Она лишь дает нам количественную информацию о том, как происходит падение мяча. Обычно ученый пытается установить математическую зависимость (выражаемую формулой) между переменными, которые, как он надеется, имеют причинно-следственную связь. Но для успешного решения этой задачи — установления математической зависимости между переменными — ученому вовсе не обязательно исследовать или понимать причинную зависимость. И это отчетливо понимал Галилей, отстаивая приоритет математического описания перед менее успешным качественным исследованием и поиском причинных связей в природе.
Галилей решительно отдавал предпочтение поиску математических формул, описывающих явления природы. Сама по себе эта идея, как и большинство идей, рожденных гениями, поначалу не производит особого впечатления. Много ли проку в «голых» математических формулах? Ведь они ничего не объясняют. Они просто