Подобно тому как количество элементов в конечных множествах мы обозначаем числами 5, 7, 10 и т.д., Кантор предложил ввести специальные символы n
для обозначения количеств элементов в бесконечных множествах. Множество целых (или натуральных) чисел и множества, которые можно поставить во взаимно-однозначное соответствие с этим множеством, содержат одинаковое количество (или «число») элементов, которое Кантор обозначил символом N0 (алеф-нуль; алеф — первая буква алфавита на иврите). Так как, по доказанному, множество всех вещественных чисел больше множества целых чисел, Кантор обозначил количество элементов в множестве всех вещественных чисел новым символом — c.Кантору удалось доказать, что для любого заданного множества всегда найдется множество, большее исходного. Так, множество всех подмножеств данного множества
всегда больше первого множества. Не вдаваясь в подробности доказательства этой теоремы, продемонстрируем разумность этого результата на примере конечных множеств. Если множество состоит из 4 элементов, то из них можно составить 4 различных подмножества, содержащих по 1 элементу; 6 различных подмножеств, содержащих по 2 элемента; 4 различных подмножества, содержащих 3 элемента; наконец, 1 множество, содержащее 4 элемента. Если добавить сюда еще пустое множество, совсем не содержащее элементов, то общее число подмножеств окажется равным 16 = 24, что, разумеется, больше 4. В соответствии с результатом, имеющим место для конечных множеств, Кантор обозначил количество подмножеств (бесконечного!) множества, содержащего α элементов (где α — трансфинитное число), через 2α; его результат гласил: 2α > α. Рассматривая все возможные подмножества множества целых чисел, Кантор сумел показать, что 2N0 = c, где c — «число» всех вещественных чисел.Когда Кантор в 70-х годах XIX в. приступил к созданию теории бесконечных множеств и еще много лет спустя, эта теория находилась на периферии математической науки. Доказанные им теоремы о тригонометрических рядах не были столь уж фундаментальными. Но к началу XX в. канторовская теория множеств нашла широкое применение во многих областях математики. Кантор и Рихард Дедекинд понимали, сколь важна теория множеств для обоснования теории целых чисел (конечных, или «финитных», и трансфинитных) для анализа понятий линии или размерности и даже для оснований математики. Другие математики, в частности Эмиль Борель и Анри Леон Лебег, к тому времени уже работали над обобщением интеграла, в основу которого была положена канторовская теория бесконечных множеств.
Поэтому, когда сам Кантор обнаружил, что его теория множеств сопряжена с определенными трудностями, это было далеко не маловажным событием. Как уже говорилось, Кантор установил, что существуют все большие бесконечные множества, т.е. все большие трансфинитные числа. Но в 1895 г. у Кантора возникла идея рассмотреть множество всех
множеств. Мощность такого «сверхмножества» должна была бы быть самой большой из возможных. Но еще ранее Кантор доказал, что множество всех подмножеств любого заданного множества должно обладать трансфинитным числом, которое превосходит трансфинитное число, отвечающее исходному множеству. Следовательно, заключил Кантор, должно существовать трансфинитное число, превосходящее наибольшее из трансфинитных чисел. Придя к столь нелепому выводу, Кантор сначала растерялся; однако затем он решил, что все множества можно разбить на противоречивые и непротиворечивые, и в 1899 г. сообщил об этом Дедекинду. Таким образом, множество всех множеств и соответствующее ему трансфинитное число попадали в разряд «противоречивых» — и тем самым исключались из рассмотрения.Когда Бертран Рассел (1872-1970) впервые узнал о выводе, к которому пришел Кантор по поводу множества всех множеств, он усомнился в правильности рассуждений Кантора. В 1901 г. Рассел писал в своей работе, что Кантор, должно быть, «совершил очень тонкую логическую ошибку, которую я [Рассел] надеюсь объяснить в одной из следующих работ». Ясно, продолжал Рассел, что наибольшее трансфинитное число должно существовать, так как если взято все, то не останется ничего и, следовательно, ничего нельзя добавить. Рассел принялся размышлять над этой проблемой — и лишь пополнил арсенал проблем своим собственным «парадоксом», с которым мы вскоре познакомимся. Когда шестнадцать лет спустя статья Рассела была перепечатана в сборнике «Мистицизм и логика», он счел нужным добавить к ней подстрочное примечание, в котором извинился за допущенную ранее ошибку, ибо объяснить парадокс Кантора ему так и не удалось.