Легран начал с предположения, что оригинальный текст был написан на английском языке. В английских текстах наиболее часто встречается буква «е». Далее, в порядке уменьшения частоты, идут остальные буквы:
Герой рассказа строит по криптограмме таблицу, в первой строке которой расположены символы зашифрованного сообщения, а во второй — частота их появления.
Таким образом, символ «8» скорее всего соответствует букве «
Группа символов «; (88», теперь, когда он знает, что она соответствует «t (ее», позволяет ему определить отсутствующую букву. Это может быть только «r», учитывая, что tree — «дерево» — наиболее вероятное слово в словаре. Наконец, благодаря подобным хитроумным криптографическим допущениям и большому терпению, он получает следующую таблицу с частично расшифрованным алфавитом:
Этого достаточно, чтобы расшифровать сообщение:
Настоящая математика не оказывает влияния на войну. Никому еще не удалось обнаружить ни одну военную задачу, которой бы служила теория чисел.
Годфри Харолд Харди
, «Апология математика» (1940)Для расшифровки сообщения важно, чтобы шифр был обратим. Как мы уже видели в случае аффинного шифра, это можно гарантировать, лишь используя простое число в качестве модуля. Более того, произведение простых чисел является практически необратимой функцией, то есть после выполнения умножения разложить произведение на исходные множители является очень трудоемкой задачей.
Такое свойство превращает эту операцию в очень полезный инструмент для систем шифрования, основанных на асимметричных ключах, как, например, RSA-алгоритм, который, в свою очередь, является основой криптографии с открытым ключом. Далее мы более подробно расскажем о связи простых чисел с криптографией и о формальной математической основе алгоритма RSA.
Простые числа и «другая» теорема
Простые числа — это подмножество натуральных чисел, больших единицы, которые делятся только на единицу и на само себя. Основная теорема арифметики утверждает, что любое натуральное число, большее единицы, всегда можно представить в виде произведения степеней простых чисел, и это представление (факторизация) является единственным. Например:
20 = 22
•563 = З2
•71050 = 2•3•52
•7.Все простые числа, кроме числа 2, нечетные. Единственные два последовательных простых числа — это 2 и 3. Нечетные последовательные простые числа — т. е. пары простых чисел, отличающихся на 2 (например, 17 и 19), — называются простыми
Простое число называется числом Мерсенна, если при добавлении единицы получается степень двойки. Например, 7 — число Мерсенна, так как 7 + 1 = 8 = 23
.Первые восемь простых чисел Мерсенна выглядят так:
3, 7, 31,127, 8191,131071, 524287, 2147483647.
В настоящее время известно чуть более 40 простых чисел Мерсенна. Самым большим из них является гигантское число: 243112609
—1, найденное в 2008 г. Для сравнения, примерное число элементарных частиц во Вселенной меньше, чем 2300.Простые числа Ферма — это простые числа вида Fn
= 22n + 1, где n — натуральное число.В настоящее время известно пять простых чисел Ферма: 3 (n
= 0), 5 (n = 1), 17 (n = 2), 257 (n = 3) и 65537 (n = 4).Простые числа Ферма носят имя прославленного французского юриста и математика Пьера де Ферма (1601–1665), который их открыл. Он сделал также другие важные открытия в теории простых чисел. Классической является малая теорема Ферма, которая утверждает: «Если р
— простое число, и целое а не делится на р, тоар a (mod р).»Этот результат имеет большое значение для современной криптографии, как мы сейчас увидим.
От
Еще один важный результат в модульной арифметике известен как соотношение Везу. Это утверждение гласит, что если а
и b — целые положительные числа, тогда уравнение НОД (a, b) =pa
+ qb = k.