Читаем Математики, шпионы и хакеры полностью

Обобщенный аффинный шифр имеет более высокий уровень безопасности, чем обычный шифр Цезаря. Почему? Как мы видели, ключом аффинного шифра является пара чисел (а, b). Если сообщение написано с использованием алфавита из 26 букв и зашифровано с помощью аффинного шифра, то и а, и b могут принимать любые значения от 0 до 25. Таким образом, в этой системе шифрования с алфавитом из 26 букв возможное количество ключей составит 25 х 25 = 625. Заметим, что количество ключей для алфавита из n букв в n раз больше, чем в шифре Цезаря.

Это значительное улучшение, но аффинный шифр все еще возможно расшифровать методом перебора всех возможных вариантов.

* * *

НАИБОЛЬШИЙ ОБЩИЙ ДЕЛИТЕЛЬ (НОД)

Наибольший общий делитель двух чисел может быть найден с помощью алгоритма Евклида. Этот алгоритм заключается в делении одного числа на другое, а затем проведении последовательных делений предыдущего делителя на новый остаток. Процесс заканчивается, когда остаток равен 0. Делитель последней операции деления и будет наибольшим общим делителем данных чисел.

Например, найдем НОД (48,30).

Разделим 48 на 30, получим остаток 18 и частное 1.

Разделим 30 на 18, получим остаток 12 и частное 1.

Разделим 18 на 12, получим остаток 6 и частное 1.

Разделим 12 на 6, получим остаток 0 и частное 2.

Мы закончили алгоритм.

НОД (48,30) = 6.

Если НОД (а, n) = 1, мы говорим, что а

и n взаимно просты.

Соотношение Везу, имеющее большое значение в криптографии, устанавливает следующий факт: для двух целых чисел а и n, больших нуля, существуют целые числа k и q, такие что НОД (а, n) =+ nq.


Игра в шпионов


При каких условиях сообщение, зашифрованное аффинным шифром, может расшифровать предполагаемый получатель или шпион? Мы ответим на этот вопрос, используя простой пример шифра для алфавита из шести букв:



Текст будет зашифрован с помощью аффинного шифра C(x) = 2x + 1 (mod 6).

Буква А зашифрована по формуле С(0) = 2 х 0 + 1  1 (mod 6), что соответствует букве В

.

Буква В зашифрована по формуле C(1) = 2 x 1 + 1  3 (mod 6), что соответствует букве D.

Буква С зашифрована по формуле С(2) = 2 х 2 + 1  5 (mod 6), что соответствует букве F.

Буква D зашифрована по формуле С(3) = 2 х З + 1 = 7  1 (mod 6), что соответствует букве В.

Буква Е зашифрована по формуле С(4) = 2 х 4 + 1 = 9  3 (mod 6), что соответствует букве D.

Буква F зашифрована по формуле С(5) = 2 х 5 + 1 = 11  5 (mod 6), что соответствует букве F.

Предлагаемый аффинный шифр преобразует сообщения АВС и DEF в одно и то же BDF, поэтому исходное сообщение теряется. Что же случилось?

Если мы работаем с шифром, выраженным формулой С(а, b)(х) =х + b) (mod n), мы можем расшифровать сообщение однозначно, только когда НОД (а, n) = 1. В нашем примере НОД (2, 6) = 2 и, следовательно, не удовлетворяет этому условию.

Математическая операция расшифровки эквивалентна нахождению неизвестного х при данном значении у по модулю n

.

С(а, b)(х) = (ах + b) y (mod n)

(ах + b) = у (mod n)

ах у b (mod n)

Другими словами, нам нужно найти значение а-1 (обратное значению а), удовлетворяющее равенству а-1а = 1, так что

а-1ах = а-1х(у

b)(mod n)

х = а-1 b)(mod n).

Следовательно, для успешной расшифровки мы должны найти число, обратное числу а по модулю n, и, чтобы не тратить зря время, мы должны заранее знать, существует ли это обратное число.

В случае аффинного шифра С(а, b)(х) = (ах + b) (mod n) обратное значение числа а будет существовать тогда и только тогда, когда НОД (а, n) = 1.

В случае аффинного шифра в нашем примере, С(х) =+ 1 (mod 6), мы хотим узнать, существует ли обратное значение для числа а, в нашем случае для числа 2.

То есть существует ли целое число n, которое меньше 6 и удовлетворяет выражению 2∙n = 1 (mod 6). Для ответа на этот вопрос мы подставим в данное выражение все возможные значения (0, 1, 2, 3, 4, 5):

2-0 = 0, 2–1 = 2, 2–2 = 4, 2–3 = 6  0, 2–4 = 8  2, 2–5 = 10  4.

Нет такого значения, следовательно, можно заключить, что 2 не имеет обратного числа. На самом деле мы это уже знали, так как НОД (2,6)  1.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука