Читаем Математики, шпионы и хакеры полностью

Несмотря на изобретательность их создателей, расшифровка этих модифицированных шифров в конечном счете была вопросом времени и вычислительных мощностей. Криптографическая история Первой мировой войны прекрасно это иллюстрирует. Мы уже рассказали о слабости немецких дипломатических шифров во время инцидента с телеграммой Циммермана. Но оказалось, о чем сами немцы даже не подозревали, что другой их шифр, известный как ADFGVX и используемый для шифрования наиболее секретных сообщений, предназначенных для фронта, также был взломан вражескими криптоаналитиками, несмотря на то, что считался неуязвимым. Этот двойной провал немецких шифровальщиков Первой мировой войны привел к тому, что все стороны осознали необходимость разработки более надежных шифров. Этой цели можно было достигнуть, лишь сильно затруднив криптоанализ.


80 километров от Парижа


В июне 1918 г. германские войска готовились напасть на столицу Франции. Для союзников было крайне важно перехватить вражеские сообщения, чтобы выяснить, где именно произойдет вторжение. Немецкие сообщения, предназначенные для фронта, были зашифрованы шифром ADFGVX, который немецкие военные считали неуязвимым.

Наш интерес к этому шифру связан с тем, что он сочетает в себе алгоритмы подстановки и перестановочного шифрования. Это один из самых изощренных методов классической криптографии. Немцы начали использовать его в марте 1918 г., и как только французы узнали о его существовании, они отчаянно принялись за его взлом.

К счастью для них, в центральном шифровальном бюро работал талантливый криптоаналитик Жорж Панвэн. Он посвятил себя этой задаче, работая круглые сутки.

Ночью 2 июня 1918 г. Панвэну удалось расшифровать первое сообщение, зловещим содержанием которого был приказ фронту: «Ускорьте продвижение боевой техники. Даже в дневное время, лишь бы незаметно». В начале шифровки было указано, что она отправлена из местечка, расположенного между Мондидье и Компьень, в 80 километрах к северу от Парижа. Результат Панвэна позволил французам сорвать атаку и остановить продвижение немцев.

Как уже упоминалось, шифр ADFGVX состоит из двух частей: шифра подстановки и шифра перестановки. Первый шаг — подстановка — состоит в следующем: у нас имеется таблица размером 7 х 7, в которой первая строка и первый столбец содержат буквы ADFGVX (см. стр. 58). Остальные поля таблицы случайным образом заполняются 36 символами: 26 букв алфавита и цифры от 0 до 9. Расположение символов представляет собой ключ к шифру, и получателю, очевидно, нужна эта информация, чтобы понять содержание сообщения.

Мы будем использовать следующую таблицу:



Шифр сообщения состоит в замене каждого символа его координатами, выраженными группой букв ADFGVX. Первой координатой будет буква, соответствующая строке, а второй — соответствующая столбцу. Например, если мы хотим зашифровать цифру 4, мы должны написать DV. Сообщение Target is Paris («Цель — Париж») будет зашифровано следующим образом:



До сих пор мы использовали лишь простую подстановку, и частотного анализа было бы достаточно, чтобы расшифровать сообщение.

Однако этот шифр содержит второй шаг — перестановку. Она зависит от ключевого слова, о котором договорились отправитель и получатель. Этот шаг осуществляется следующим образом. Сначала мы построим таблицу с таким числом столбцов, сколько букв в ключевом слове, и заполним поля таблицы зашифрованным текстом.

Буквы ключевого слова пишут в верхнем ряду новой таблицы. В этом примере ключевое слово будет BETA. Построим таблицу, в которой первая строка состоит из букв ключевого слова и следующие строки содержат буквы, полученные после кодирования сообщения на этапе подстановки. Любые пустые ячейки заполняются цифрой ноль, которая, как видно из первой таблицы, имеет код AG.

Чтобы применить второй шаг к нашему сообщению «Цель — Париж», напомним сначала, что после подстановки оно выглядело так:



Используя ключевое слово BETA, мы получим следующую таблицу.



Применяя перестановочный шифр, изменим порядок столбцов, чтобы буквы ключевого слова были расположены в алфавитном порядке. Это даст нам следующую таблицу.



Зашифрованное послание получается, если брать буквы этой таблицы по столбцам. В нашем примере это будет:

AAXFAXGGFGVAFVXWXDVFFDGVFVA

Как мы видим, теперь сообщение состоит из вроде бы случайного набора букв A, D, F, G, V и X. Немцы выбрали эти шесть букв, потому что по звучанию в азбуке Морзе они сильно отличаются друг от друга, и получатель легко может отсеять возможные при передаче ошибки. Более того, поскольку сообщения состоят из шести букв, посылать такие телеграфные передачи могли даже неопытные операторы.

Если мы обратимся к таблице кодов Морзе в начале главы, то увидим следующие коды для каждой из букв шифра ADFGVX:



Чтобы расшифровать сообщение, получателю необходимо знать распределение букв и цифр в базисной таблице и ключевое слово.


Шифровальная машина «Энигма»


В 1919 г. немецкий инженер Артур Шербиус запатентовал машину для защищенной связи. Ее название, «Энигма», с тех пор стало синонимом военной тайны.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука