Читаем Математики, шпионы и хакеры полностью

В частности, если НОД (a, b) = 1, это соотношение гарантирует существование целых чисел р и q, таких что

pa + qb = 1.

Работая по модулю n, возьмем НОД (а, n) = 1, тогда обязательно существуют целые числа р и q, такие что pa + qn = 1. Так как n — модуль, то qn = 0, следовательно, существует такое р, что pa = 1, то есть существует число, обратное числу а по модулю n, а именно р.

Элементы, имеющие обратный элемент по модулю n, являются натуральными числами, которые меньше, чем n, и удовлетворяют условию НОД (а, n) = 1. Количество таких чисел называется функцией Эйлера и обозначается как ф(n).

Если число представлено в виде произведения степеней простых чисел следующим образом 



Например, если n = 1600 = 26∙52, то



Более того, в случае, если n — простое число, то для любого значения а выполняется НОД (а, n) = 1, и, следовательно, любое число а будет иметь обратное по модулю n, значит ф(n) = n

1.

Итак, подведем итог самым важным фактам.

1. ф(n) называется функцией Эйлера и обозначает количество натуральных чисел, меньших n и взаимно простых с ним.

2. Если n = рq, где р и q простые числа, то

a(n) = (p  1)(q 1).

3. Из малой теоремы Ферма мы знаем, что если а — целое число, большее нуля, и р — простое число, то а р   a (mod р), что эквивалентно ар — 1  1 (mod р).

4. Если НОД (а, n) = 1, тогда имеем аф(n)  1 (mod n).


Почему работает RSA-алгоритм?

Математические факты, изложенные выше, лежат в основе алгоритма шифрования RSA.

RSA-алгоритм зашифровывает численное представление m некоторого сообщения с помощью двух простых чисел р и q. Возьмем n = pq. Обозначим за е любое значение, такое что НОД (е, ф(n)) = 1, и пусть d будет обратный элемент числа е по модулю ф(n). [Мы знаем, что он существует, так как НОД (е, ф(n)) = 1]. Тогда:

d∙е = 1 по модулю ф(n).

Зашифрованное послание М шифруется следующим образом: М = mе (mod n).

Алгоритм подразумевает, что исходное сообщение m может быть получено как m = Md

=
(me)d (mod n). Проверка этого уравнения как раз и демонстрирует работу алгоритма RSA. Мы воспользуемся теоремой Ферма и функцией Эйлера.

Рассмотрим два случая.

1. Если (m, n) = 1, то с функцией Эйлера имеем: mф(n) 1 (mod n).

Начнем с того, что dе = 1 по модулю ф(n) эквивалентно соотношению еd 1 = 0 (mod ф(n)) то есть существует целое значение k, такое, что еd 1 = kф(n) или еd = kф(n) + 1. Используя это и формулу Эйлера, получим:

(me)d = med = m kф(n)+1= m kф(n)∙m = (m ф(n))k∙m  1km (mod n) = m (mod n).

Это и есть нужный нам результат.

2. Если НОД (m,n) 1 и n = рq, тот содержит или только множитель р, или только q, или оба одновременно.

Пусть m содержит только множитель р

. Тогда, во-первых, m кратно р, то есть существует целое число r, такое, что m =. Поэтому mde 
0 (mod р) или mde = m (mod р), другими словами, существует значение А, такое, что:

mde m = Ар. (1)

Во-вторых, мы имеем:

(me)d = med = mk ф(n)+1 = m k ф(n)m = (mф(n))km = (m(q-1))k(p-1)m.

Так как НОД (m, n) = р, НОД (m, q) = 1, то по теореме Ферма m(q-1)  1 (mod q).

Подставим это в предыдущее выражение.

(me)d = med = mk ф(n)+1 = m k ф(n)∙m = (mф(n))km = (m(q-1))k(p-1)

m  1k (р-1)m  m (mod q).

Откуда мы заключаем, что существует значение В, такое что:

mde m = Вq. (2)

Из (1) и (2) следует, что разность (mdem) делится на n = рq, поэтому

mde m  0 (mod n).

Аналогично это доказывается для случая, когда m содержит только множитель q.

В случае, когда m кратно и р, и q одновременно, результат тривиален. Следовательно,

(mе)d  m (mod n).

Таким образом, мы продемонстрировали математическую основу алгоритма RSA.

Список литературы

Fernandez, S., Classical Cryptography. Sigma Review No. 24, April 2004.

Garfunkel, S., Mathematics in Daily Life, Madrid, COMAP, Addison-Wesley, UAM, 1998.

Gomez, J., From the Teaching to the Practice of Mathematics Barcelona, Paidos, 2002.

Kahn, D., The Codebreakers: The Story of Secret Writing, New York, Scribner, 1996.

Издание на русском языке: Кан Д. Взломщики кодов. — М.: Центрполиграф, 2000.

Singh, S., The Secret Codes, Madrid, Editorial Debate, 2000.

Tocci, R., Digital Systems: Principles and Applications, Prentice Hall, 2003.

Издание на русском языке: Тончи Р. Цифровые системы. Теория и практика. — М.: Вильямс, 2004.


* * *

Научно-популярное издание

Выходит в свет отдельными томами с 2014 года

Мир математики

Том 2

Жуан Гомес

Математики, шпионы и хакеры.

Кодирование и криптография.

РОССИЯ

Издатель, учредитель, редакция:

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука