Читаем Мечты об окончательной теории полностью

Но не только принципы симметрии придают нашим теориям жесткость. Основываясь только на этих принципах, мы не смогли бы прийти к электрослабой теории или квантовой хромодинамике; эти теории выступали бы как частные случаи намного более широкого круга теорий с неограниченным набором настраиваемых констант, которые могли бы выбираться совершенно произвольно. Дополнительные ограничения, позволяющие отобрать нашу простую стандартную модель из множества других, более сложных, теорий, удовлетворяющих тем же принципам симметрии, связаны с требованием, чтобы полностью сокращались все бесконечности, которые возникают в вычислениях. (Иначе говоря, теория должна быть «перенормируемой»[107]

.) Это условие, как оказывается, придает уравнениям теории большую простоту и вместе с разными локальными симметриями позволяет придать законченную форму нашей стандартной модели элементарных частиц.

Красота, которую мы обнаруживаем в таких теориях, как ОТО или стандартная модель, сродни той красоте, которую мы ощущаем в некоторых произведениях искусства благодаря вызываемому ими ощущению законченности и неизбежности: не хочется менять ни одной ноты, ни одного мазка кисти, ни одной строки. Однако, как и в нашем восприятии музыки, живописи или поэзии, это ощущение неизбежности есть дело вкуса и опыта и не может быть сведено к «сухой» формуле.

Каждые два года лаборатория им. Лоуренса в Беркли издает маленькую книжечку, в которой перечислены известные на данный момент свойства элементарных частиц25)

. Если я выскажу утверждение: фундаментальным законом природы является то, что элементарные частицы имеют свойства, которые перечислены в книжечке, то отсюда можно будет сделать вывод, что известные свойства элементарных частиц следуют из этого фундаментального принципа. Этот принцип даже имеет некоторую предсказательную силу: каждый новый протон или электрон, созданный в наших лабораториях, будет иметь те самые массу и заряд, которые указаны в этой книжечке. Но, взятый сам по себе, этот принцип настолько уродлив, что никто и не подумает, будто вопрос исчерпан. Уродливость этого принципа – в отсутствии простоты и неизбежности. Ведь книжечка содержит тысячи чисел, и любое из них можно изменить, не превратив остальную информацию в глупость. Нет никакой логической формулы, которая устанавливала бы четкую границу между красивой теорией, способной что-то объяснить, и простым перечислением данных, но мы знаем, что эта граница существует, когда мы ее видим: мы требуем простоты и жесткости наших принципов, прежде чем принять их всерьез. Итак, наши эстетические суждения есть не только средство, помогающее нам найти научные объяснения и оценить их пригодность; эти суждения есть часть того, что мы подразумеваем под объяснением
.

Иные ученые иногда подшучивают над физиками, занимающимися элементарными частицами, так как сейчас открыто столько так называемых элементарных частиц, что нам приходиться все время таскать с собой упомянутую книжечку, чтобы в нужный момент вспомнить о характеристиках какой-то из них. Но само по себе число частиц несущественно. Как сказал Абдус Салам, природа экономит не на частицах или силах, а на принципах. Важно установить набор простых, экономных принципов, которые объясняли бы, почему частицы такие, какие они есть. Конечно, огорчительно, что до сих пор у нас нет полной теории того типа, которого хотелось бы. Но когда такая теория будет построена, уже будет не очень существенно, сколько сортов частиц или сил она описывает, если только она делает это красиво, как неизбежное следствие простых принципов.

Перейти на страницу:

Похожие книги

Хаос и структура
Хаос и структура

"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число."Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."

Алексей Федорович Лосев

Математика / Философия / Образование и наука