B. В. Булгаков, А.Ю. Ишлинский и др.) Принимая во внимание достижения в годы Великой Отечественной вой-ны и блестящие успехи в мирное время в освоении космического пространства, можно считать неоспоримым, что как советская гироскопическая техника, так и подкреплявшая ее теория уже тогда занимали то выдающееся положение, которое они сохраняют по сей день. Это верно и для такой почти сливающейся с математикой области, как теория динамических систем. Благодаря работам Московской математической школы по качественной теории дифференциальных уравнений в СССР были быстро освоены новые топологические методы исследования, и в 30е годы советские ученые создали ряд выдающихся работ по общей теории динамических систем.
В теории устойчивости тоже тесно переплетаются разработка общих математических методов и исследование более конкретных механических проблем. Задачи, выдвигаемые различными областями техники, заставили заняться помимо статической и динамической устойчивостью не только в рамках аналитической механики неизменяемых систем, но и в теории упругости, в механике жидкостей и газов. Потребовалось применение более строгих математических методов, поэтому были широко использованы замечательные результаты Ляпунова, и началось дальнейшее развитие его методов. Оказалось целесообразным применение в различных вопросах разных характеристик устойчивости. Формируется новая научная школа, разрабатывающая этот обширный цикл вопросов; в нее входят и специалисты по небесной механике, для которых устойчивость по Ляпунову, т. е. по отношению к возмущениям начальных данных, имеет особо важное значение (Московская школа — Н.Д. Моисеев, Г.Н. Дубошин, Н.Ф. Рейн и др.), и ученые, занимавшиеся общими методами аналитической механики и теории дифференциальных уравнений (Казанская школа — Н.Г. Четаев, Г.В. Каменков, И.Г. Малкин, К.П. Персидский и др.).
Особенно бурно и широко развивалась теория колебаний, в которой методы Ляпунова тоже нашли плодотворное применение. Нелинейные колебания, изучение которых стало первоочередной задачей к началу 20-х годов, стали в сущности предметом новой научной дисциплины, получившей название (пожалуй, не совсем точное) нелинейной механики. Уже к началу 30-х годов советская механика занимает в этой области ведущее положение благодаря трудам школы Л.И. Мандельштама (1879— 1944), Н.Д. Папалекси (1880—1947), А.А. Андронова (1901—1952), широко применявшей методы Ляпунова и Пуанкаре, и трудам Н.М. Крылова (1879—1955) и Н.Н. Боголюбова, использовавших главным образом асимптотические методы, родственные методам небесной механики. Развитие современной теории нелинейных колебаний в ряде других стран, например в США, началось с изучения переводных трудов советских ученых.
МЕХАНИКА СПЛОШНОЙ СРЕДЫ В ДОВОЕННЫЙ ПЕРИОД
В теории упругости выдающиеся результаты были получены при разработке общих методов интегрирования дифференциальных уравнений равновесия упругого тела, приближенных методов их решения и в исследовании многочисленных частных задач. Это было продолжением и расширением исследований русских механиков дореволюционного периода. Но сложились также новые школы и направления. Систематически велись исследования по плоской задаче теории упругости с помощью методов теории функций комплексного переменного, большая группа ученых работала по теории пластинок и оболочек, приобретавшей все большее значение для техники. Меньше внимания уделялось контактным задачам, но и они стали постоянным предметом исследований. Впервые после трудов Остроградского значительные результаты были получены в теории распространения упругих волн, которая разрабатывалась в связи с запросами сейсмологии. К этому списку надо добавить исследование устойчивости упругих систем, теорию стержневых систем, графические методы. Тут мы находимся на стыке теории упругости и таких прикладных дисциплин, как строительная механика и сопротивление материалов.
Впервые полноправным разделом механики стала теория пластичности. Наряду с определенными результатами, полученными на основе ранее разрабатывавшихся статических теорий, были начаты обширные исследования новых моделей пластического и вязкопластического состояний. Это сочеталось с интенсивной работой в таких практически важных и специфических областях, как механика сыпучей массы и механика грунтов.