В третьем отделе Ньютон рассматривает движение тел по эксцентричным коническим сечениям под действием центростремительной силы, направленной к фокусу кривой. Отдельно для эллипса (предложение 11), гиперболы (предложение 12) и параболы (предложение 13) доказывается, что величина силы обратно пропорциональна квадрату расстояния до центра силы. Отсюда выводится основа второго и третьего законов Кеплера, а именно: «Если несколько тел обращаются около общего центра сил, причем центростремительные силы обратно пропорциональны квадрату расстояния до центра, то главные параметры орбит пропорциональны квадратам площадей, описываемых проведенными к телам радиусами в одно и то же время». И в следующем предложении: «При тех же предположениях утверждаю, что времена оборотов по эллипсам относятся между собою, как большие полуоси в степени 3
/2».Третьей книге предпосланы «Правила философствования», о которых мы скажем позднее, и «Явления», т. е. обобщенные данные астрономических наблюдений. Явление 1 относится к спутникам Юпитера, орбиты которых «не отличаются чувствительно» от кругов с центрами в центре этой планеты; к ним применим закон площадей (второй закон Кеплера) и третий закон Кеплера. Явление 2 — то же относительно спутников Сатурна. В явлениях 3—5 утверждается справедливость второго и третьего законов Кеплера относительно пяти «главных планет» (Меркурия, Венеры, Марса, Юпитера и Сатурна), а в явлении 6 — применимость закона площадей к движению Луны.
Поскольку в первой книге «Начал» законы Кеплера уже были выведены теоретически из закона центростремительной силы, а в только что упомянутых «Явлениях» констатировано, что эти законы распространяются на планеты и их спутники, постольку в первых предложениях третьей книги Ньютону уже не остается ничего другого, как сослаться на уже сказанное. Это сделано в полном соответствии с правилами изложения по обычаю геометров, т. е. по образцу «Начал» Евклида. В качестве примера достаточно привести лишь текст предложения 1 и его доказательства: «Силы, которыми спутники Юпитера постоянно отклоняются от прямолинейного движения и удерживаются на своих орбитах, направлены к центру Юпитера и обратно пропорциональны квадратам расстояний мест до этого центра». Доказательство сводится к фразе: «Первая часть предложения следует из явления 1 и предложения 2 или 3 книги I; последняя часть — из явления 1 и следствия 6 предложения 4 той же книги». Далее Ньютон добавляет: «То же самое разумей и о спутниках Сатурна на основании явления 2».
Центральное место в III книге занимает предложение 4: «Луна тяготеет к Земле и силою тяготения постоянно отклоняется от прямолинейного движения и удерживается на своей орбите».
Отсюда Ньютон делает свой знаменитый вывод, что сила, которая удерживает Луну на ее орбите, есть та самая сила, которая называется тяжестью, или тяготением.
Этот вывод Ньютон основывает на первом и втором правилах философствования, или, как переводит А.Н. Крылов, правилах умозаключений в физике. Первое правило гласит: «Не должно принимать в природе иных причин сверх тех, которые истинны и достаточны для объяснений явлений». В этой связи Ньютон ссылается на старое утверждение философов, что «природа ничего не делает напрасно», что «природа проста и не роскошествует излишними причинами вещей». Отсюда второе правило: «поскольку возможно, должно приписывать те же причины того же рода проявлениям природы».
Следовательно, сила, которая удерживает Луну на ее орбите, и сила тяготения — одна и та же. На основании того же второго правила Ньютон распространяет сказанное на спутники других планет и самые планеты.
Если сопоставить только что сказанное с ранее приведенными положениями Ньютона, нетрудно видеть, что порядок изложения «Начал» — от общих абстрактных выводов к проверке их конкретными эмпирическими данными — вовсе не соответствует историческому ходу мысли самого Ньютона, где обнаруживается сложнейшее переплетение абстрактного и конкретного. Уместно напомнить, что как раз в годы написания «Начал» (1686—1687) Ньютон беспрестанно обращался к астроному Флемстиду с вопросами относительно точных данных, касающихся орбит Юпитера и Сатурна, сплющенности Юпитера у полюсов, расхождений между новыми наблюдениями Сатурна и таблицами Кеплера и т. д.
Ньютон несколько раз решительно заявлял, что в «Началах» он исследует силы не как физик, а как математик. Так, он писал: «Я придаю тот же самый смысл названиям ускорительные и движущие притяжения и натиски (импульсы). Названия же притяжение, натиск (импульс) или стремление я употребляю безразлично одно вместо другого, рассматривая эти силы не физически, а математически». Ньютон заявляет, что не хочет этими названиями определить самый характер действия или физические причины происхождения этих сил или же приписывать центрам (которые суть математические точки) и физические силы, хотя и будет говорить о «силах центров и о притяжении центрами»{125}
.