Минимизацию затрат проведем в три этапа. На первом этапе зафиксируем моменты
Меняя величину δ, мы изменяем высоту рассматриваемой «ступеньки» графика
За промежуток времени Δ затраты, связанные с превышением уровня качества сверх мирового, как видно, равны
а потери из—за морального старения (при отставании от мирового уровня) равны
Следовательно, суммарные потери за рассматриваемый интервал времени момента (
Выбирая δ оптимальным образом, минимизируем суммарные затраты и потери за рассматриваемый интервал времени. Продифференцировав функцию
При оптимальном δ затраты за период с
На втором этапе оптимизации зафиксируем число скачков и найдем при этом условии оптимальные моменты скачков
Эту функцию необходимо минимизировать по всем
Δ 1 + Δ 2 + … + Δ
Достаточно решить чисто математическую задачу оптимизации
где
Тогда
Поскольку
то
следовательно, с учетом предыдущего равенства имеем
Сумма квадратов всегда неотрицательна. Она достигает минимума, равного 0, когда все переменные равны 0, т. е. при
Тогда
При этих значениях
выполнены все ограничения оптимизационной задачи.