Читаем Менеджмент: конспект лекций полностью

Роль прогнозирования в управлении страной, отраслью, регионом, предприятием очевидна. Необходимо учитывать СТЭЭП—факторы (т. е. социальные, технологические, экономические, экологические, политические), факторы конкурентного окружения и научно—технического прогресса. А также прогнозирование расходов и доходов предприятий, населения и общества в целом. Проблемы внедрения и практического использования математических методов эконометрического прогнозирования для управления рисками и принятия решений связаны прежде всего с отсутствием в нашей стране достаточно обширного опыта подобных исследований.

Статистические методы прогнозирования.

Наиболее часто используется метод наименьших квадратов при небольшом числе факторов (1–5). Метод наименьших модулей и другие методы экстраполяции применяются реже, хотя их статистические свойства зачастую лучше.

Оценивание точности прогноза – необходимая часть процедуры квалифицированного прогнозирования. При этом обычно используют вероятностно—статистические модели восстановления зависимости, например, строят наилучший прогноз по методу максимального правдоподобия (при использовании параметрических моделей). Разработаны параметрические (обычно на основе модели нормальных ошибок) и непараметрические оценки точности прогноза и доверительные границы для него (на основе Центральной Предельной Теоремы теории вероятностей). Так, предложены и изучены методы доверительного оценивания точки наложения (встречи) двух временных рядов и их применения для оценки динамики технического уровня собственной продукции и продукции конкурентов, представленной на мировом рынке.

Применяются также эвристические приемы, не основанные на какой—либо теории: метод скользящих средних, метод экспоненциального сглаживания. Адаптивные методы прогнозирования позволяют оперативно корректировать прогнозы при появлении новых точек

Многомерная регрессия – основной на настоящий момент эконометрический аппарат прогнозирования. Подчеркнем, что нереалистическое предположение о нормальности погрешностей измерений и отклонений от линии (поверхности) регрессии использовать не обязательно. Однако для отказа от предположения нормальности необходимо опереться на иной математический аппарат, основанный на многомерной центральной предельной теореме теории вероятностей и эконометрической технологии линеаризации. Он позволяет проводить точечное и интервальное оценивание параметров, проверять значимость их отличия от 0 в непараметрической постановке, строить доверительные границы для прогноза.

Весьма важна проблема проверки адекватности модели, а также проблема отбора факторов. Дело в том, что априорный список факторов, оказывающих влияние на отклик, обычно весьма обширен, желательно его сократить. Крупное направление современных эконометрических исследований посвящено методам отбора «информативного множества признаков». Однако эта проблема пока еще окончательно не решена. Проявляются необычные эффекты. Так, установлено, что обычно используемые статистические оценки степени полинома при росте объемы выборки имеют геометрическое распределение.

Перспективны непараметрические методы оценивания плотности вероятности и их применения для восстановления регрессионной зависимости произвольного вида. Наиболее сильные результаты в этой области получены с помощью подходов статистики нечисловых данных.

К современным статистическим методам прогнозирования относятся также модели авторегрессии, модель Бокса—Дженкинса, системы эконометрических уравнений, основанные как на параметрических, так и на непараметрических подходах.

Для установления возможности применения асимптотических результатов при конечных (т. н. «малых») объемах выборок полезны компьютерные статистические технологии. Они позволяют также строить различные имитационные модели. Отметим полезность методов размножения данных (бутстреп—методов). Системы прогнозирования с интенсивным использованием компьютеров объединяют различные методы прогнозирования в рамках единого автоматизированного рабочего места прогнозиста.

Прогнозирование на основе данных, имеющих нечисловую природу, в частности, прогнозирование качественных признаков основано на результатах статистики нечисловых данных. Весьма перспективными для прогнозирования представляются регрессионный анализ на основе интервальных данных, включающий, а также регрессионный анализ нечетких данных. Общая постановка регрессионного анализа в рамках статистики нечисловых данных и ее частные случаи – дисперсионный анализ и дискриминантный анализ (распознавание образов с учителем) дает единый подход к формально различным методам, традиционно рассматриваемым как принципиально различные. Она полезна при программной реализации современных статистических методов прогнозирования.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже