Читаем Металлы в живых организмах полностью

Пожалуй, невозможно найти другой биохимический аппарат, который мог бы с таким совершенством использовать энергию излучения для химических целей, как это делает хлорофилл. Хлорофилл действительно является звеном между энергией Солнца и жизнью на Земле; этим определяется исключительная роль ионов магния в развитии форм жизни.

Лишь очень небольшая часть энергии, падающей на лист, используется им для целей фотосинтеза, эта часть не превышает 1%. И тем не менее общая продукция фотосинтеза на Земле колоссально велика. Биохимики называют фотосинтез самым крупным из химических процессов на Земле. Действительно, продукция фотосинтеза за год (1011 т органического углерода) в 100 раз превышает ежегодную мировую продукцию угольной и нефтяной промышленности; энергия, которую накапливают фотосинтетические машины в организмах, в 10000 раз превышает энергию воды, используемую в гидростанциях всего мира, и в 100 раз — энергию сгорания угля.

Эти числа, конечно, являются ориентировочными; но тем не менее их порядок дает вполне ясное представление о масштабах биологического процесса, который называется фотосинтезом.

Глава 11. Фиксация атмосферного азота и ионы металлов

Биологические машины по совершенству конструкции и точности работы превосходят многие технические устройства. Но особенно ярко преимущество организмов над механизмами, созданными человеком, проявилось в проблемах фиксации атмосферного азота и фотосинтеза.

В этой главе коснемся вопросов связывания азота. Уже в начале нашего века стало ясно, что запасов природной селитры — распространенного сырья для получения соединений азота (удобрений, лекарств, красителей) хватит приблизительно на 50 лет. Угроза настоящего азотного голода заставила химиков и инженеров тщательно изучать все реакции, в которые вступает свободный азот. Азот, состоящий из двухатомных молекул N2, в большом количестве имеется в воздухе, практически атмосфера — неисчерпаемый источник азота. Но молекулы N2 очень прочны, и число реакций, в которые они вступают при невысоких температурах, невелико.

Так, азот реагирует с металлом литием, образуя нитрид лития, но литий дорог, а регенерировать его нельзя без значительных затрат. При высоких температурах в присутствии катализаторов и при повышенном давлении удается связать азот с водородом в аммиак, но для этого требуется сложное и тоже не дешевое заводское оборудование. В природе существует много видов бактерий (клубеньковые бактерии — азотобактер, клостридиум и др.), фиксирующих атмосферный азот в гораздо более "мягких" условиях и успешно превращающих его в аммиак.

Во всех этих бактериях действует фермент, названный нитрогеназой. Для того чтобы превратить молекулярный азот в аммиак, ферментативные системы заставляют азот реагировать с ионом водорода и электроном. Детальный ход реакции не известен, но в ней, несомненно, принимает участие АТФ.

Белок нитрогеназы представляет собой комплекс двух белков — один из них содержит железо, а другой — железо и молибден. Кроме того, для действия нитрогеназы нужны двухзарядные ионы металлов: магния, марганца или кобальта (но не кальция), причем наибольший активирующий эффект получается с магнием.

Предполагалось, что в реакции фиксации атмосферного азота в качестве промежуточных продуктов получаются соединения N2

H2 — диазен и N2H4 — гидразин.

Наличие в нитрогеназе двух металлов заставило предположить, что молекулы диазена и гидразина являются мостиками, связывающими в нитрогеназе ионы металлов. Более обстоятельное исследование привело к выводу, что роль мостика между железом и молибденом играет атом серы:

Роль мостика между железом и молибденом играет атом серы

К атому железа присоединяется молекула азота, так что получается комплекс:

К атому железа присоединяется молекула азота

Затем возникает связь азот — молибден и присоединяется электрон и протон:

Возникает связь азот — молибден и присоединяется электрон и протон

Присоединение водорода ведет к разрыву двойной связи и в конечном счете к образованию аммиака:

Присоединение водорода ведет к разрыву двойной связи и в конечном счете к образованию аммиака

В этом процессе длины связей между атомами растут от стадии к стадии (молекула растягивается), а приток возбужденных электронов дает возможность присоединить протон. Таким образом, связь с металлами облегчает реакцию азота с водородом.

Разумеется, искусственное создание такого двухъядерного комплекса, состоящего из двух металлов и легко осуществляющего фиксацию атмосферного азота, представляется чрезвычайно заманчивым. Но на пути практического решения этой задачи встретились большие трудности; ведь то, что теоретически можно изобразить схемой, — только приближенная картина крайне сложного биохимического процесса, в котором множество важных особенностей не учтено (например, изменения формы белковых молекул, играющие большую роль в катализе).

Перейти на страницу:

Все книги серии Мир знаний

Похожие книги

Происхождение мозга
Происхождение мозга

Описаны принципы строения и физиологии мозга животных. На основе морфофункционального анализа реконструированы основные этапы эволюции нервной системы. Сформулированы причины, механизмы и условия появления нервных клеток, простых нервных сетей и нервных систем беспозвоночных. Представлена эволюционная теория переходных сред как основа для разработки нейробиологических моделей происхождения хордовых, первичноводных позвоночных, амфибий, рептилий, птиц и млекопитающих. Изложены причины возникновения нервных систем различных архетипов и их роль в определении стратегий поведения животных. Приведены примеры использования нейробиологических законов для реконструкции путей эволюции позвоночных и беспозвоночных животных, а также основные принципы адаптивной эволюции нервной системы и поведения.Монография предназначена для зоологов, психологов, студентов биологических специальностей и всех, кто интересуется проблемами эволюции нервной системы и поведения животных.

Сергей Вячеславович Савельев , Сергей Савельев

Биология, биофизика, биохимия / Зоология / Биология / Образование и наука
История биологии с начала XX века до наших дней
История биологии с начала XX века до наших дней

Книга является продолжением одноименного издания, вышедшего в 1972 г., в котором изложение доведено до начала XX в. В настоящей книге показано развитие основных биологических дисциплин в XX в., охарактеризованы их современный уровень и стоящие перед ними проблемы. Большое внимание уделено формированию молекулярных отраслей биологии и их роли в преобразовании всего комплекса биологических наук. Подобная книга на русском языке издается впервые.Предназначается для широкого круга научных работников, преподавателей, аспирантов и студентов биологических факультетов.Табл. 1. Илл. 107. Библ. 31 стр.Книга подготовлена авторским коллективом в составе:Е.Б. Бабский, М.Б. Беркинблит, Л.Я. Бляхер, Б.Е. Быховский, Б.Ф. Ванюшин, Г.Г. Винберг, А.Г. Воронов, М.Г. Гаазе-Рапопорт, О.Г. Газенко, П.А. Генкель, М.И. Гольдин, Н.А. Григорян, В.Н. Гутина, Г.А. Деборин, К.М. Завадский, С.Я. Залкинд, А.Н. Иванов, М.М. Камшилов, С.С. Кривобокова, Л.В. Крушинский, В.Б. Малкин, Э.Н. Мирзоян, В.И. Назаров, А.А. Нейфах, Г.А. Новиков, Я.А. Парнес, Э.Р. Пилле, В.А. Поддубная-Арнольди, Е.М. Сенченкова, В.В. Скрипчинский, В.П. Скулачев, В.Н. Сойфер, Б.А. Старостин, Б.Н. Тарусов, А.Н. Шамин.Редакционная коллегия:И.Е. Амлинский, Л.Я. Бляхер, Б.Е. Быховский, В.Н. Гутина, С.Р. Микулинский, В.И. Назаров (отв. секретарь).Под редакцией Л.Я. Бляхера.

Коллектив авторов

Биология, биофизика, биохимия