Принцип самоорганизации, самопроизвольно возникающей сложности, открывает перед нами новый ослепляющий взгляд на природу – творящую или эволюционную перспективу вместо (или как дополнение) принципов «часового механизма» и «тепловой смерти». Самоорганизующиеся системы являются в природе правилом, но, как это ни парадоксально, «открыты» они были лишь тридцать лет назад, а ее математический анализ был выполнен спустя несколько лет – после того как появилась теория хаоса. Теперь мы видим, как напоминает нам Пригожин, что природа «мыслит» неинтегрируемыми дифференциальными уравнениями, «мыслит» в понятиях хаоса и самоорганизации, «мыслит» в понятиях нелинейных динамических систем. («Вселенная, – говорит Пригожин, – подобна гигантскому мозгу».) Эти системы выходят далеко за пределы равновесных состояний, и это отсутствие равновесия придает им чувствительность к возмущениям, способность радикально и непредсказуемо изменяться, порождать и развертывать новые структуры и формы. Такие системы с их «универсальным поведением», как именуют эти свойства хаологи, оставались незамеченными в нашей повседневной жизни, несмотря на их необыкновенно широкую распространенность. Никто раньше просто не подозревал об их существовании.
Пол Дэвис, космолог, пишет:
«В течение трех столетий в науке господствовали ньютонианские и термодинамические парадигмы, представлявшие Вселенную либо в виде стерильного механизма, либо в виде распадающейся и гибнущей системы. Теперь появилась новая парадигма творящей Вселенной. Теория этой парадигмы учитывает прогрессивный, обновляющий характер физических процессов» (1988).
Если мы спросим, почему этот новый взгляд не появился в науке раньше (интуитивно он был ясен всегда), то отчасти ответ будет заключаться в
Но естественные природные системы, вообще говоря, не являются закрытыми, они открыты и обмениваются с окружающей средой; они, эти системы, часть мира со всеми его превратностями. Эта открытость к окружающей среде является причиной непредсказуемых флуктуаций, заставляющих системы все больше и больше отклоняться от состояния равновесия. Вскоре состояние системы доходит до критической точки – до сингулярных точек, о которых пишет Клерк Максвелл, – и в этой точке происходит внезапное резкое изменение, так называемая бифуркация; здесь многократно усиленная флуктуация переводит систему в новую фазу, в которой система начинает движение к следующей точке бифуркации. Так происходит стремительная дивергенция, открывающая перед системой бесчисленные альтернативные пути. В классической закрытой системе флуктуации быстро затухают и подавляются. В открытых, реальных, системах верно противоположное, флуктуации становятся «двигателем» всего процесса. Пригожин называет этот феномен «упорядочивающими флуктуациями» и считает его фундаментальным организующим принципом природы.
Конечно, не один Пригожин находится на переднем крае, не он один сделал это открытие и не он один разделяет новое мышление. Открытия в этой области делали многие исследователи, здесь даже имела место конкуренция, а сами открытия делались в десятках не зависящих друг от друга областях науки, и только теперь мы видим, что все они – на глубинном уровне – тесно взаимосвязаны. Так, примером открытой системы является атмосфера, приводившая в отчаяние метеорологов, тщетно старавшихся точно предсказать погоду. До начала шестидесятых годов господствовало мнение о том, что если располагать более полным знанием о состоянии системы и иметь в распоряжении достаточное количество быстродействующих компьютеров, то появится возможность делать точные долгосрочные прогнозы погоды. Эдвард Лоренц доказал, что это не так, потому что система не является линейной и описывающие ее дифференциальные уравнения в частных производных не могут быть решены однозначно. Вместо этого они расходятся и распадаются на множество альтернативных уравнений.
Эта область исследований дала начало совершенно новой отрасли науки – теории хаоса, или нелинейной динамики. Сейчас мы все больше и больше убеждаемся в том, что теория хаоса дает нам ключ к пониманию сложности и необратимости происходящих в природе процессов [71]
.