Читаем Микромеханические системы и элементы полностью

Термин гироскоп происходит от «наблюдатель вращений» (от греч. gyros – круг, gyrou – кружусь, вращаюсь и scopeo –

смотрю, наблюдаю), предложен в 1852 году французским ученым Леоном Фуко при изобретении прибора для демонстрации вращения Земли вокруг своей оси. Фуко поместил вращающийся маховик в некоторое устройство, называемое кардановым подвесом, поэтому долгое время слово гироскоп использовалось для обозначения быстро закрученного вращающегося симметричного твердого тела. По закону ньютоновой механики, скорость поворота оси гироскопа в пространстве обратно пропорциональна его собственной угловой скорости, и, следовательно, ось быстро закрученного гироскопа поворачивается столь медленно, что в отдельном интервале времени конструкцию используют в качестве указателя неизменного направления в пространстве. И хотя опыт с первым гироскопом оказался не вполне удачным, морские и военные применения гироскопов усовершенствовали первоначальную конструкцию Фуко весьма быстрыми темпами.

Примерно через полтора века гироскопами уже называли широкий класс приборов; сейчас термин гироскоп используется для названия устройств, содержащих материальный объект, совершающий быстрые периодические движения. В результате этих движений устройство становится чувствительным к вращению в инерциальном пространстве. При таком понимании слова гироскоп для него уже необязательно наличие симметричного массивного быстро вращающегося ротора, подвешенного без трения таким образом, чтобы его центр масс совпадал с центром подвеса.

Гироскопы разделяют на измерительные и силовые. Силовые служат для создания моментов сил, приложенных к основанию, на котором установлен гироприбор, а измерительные предназначены для определения параметров движения основания (измеряемыми параметрами могут быть углы поворота основания, проекции вектора угловой скорости и т. д.).

1.1.1. Самый простой гироскоп

Простейшим гироскопом, с необыкновенными свойствами которого мы знакомимся еще в детстве, является волчок. Парадоксальность поведения волчка заключается в его сопротивлении изменить направление оси вращения. При действии внешней силы ось волчка (гироскопа) двигается в направлении, перпендикулярном вектору силы. Поэтому вращающийся волчок не падает, а его ось описывает конус вокруг вертикали; это движение называется регулярной прецессией тяжелого твердого тела.

Медленное движение вектора собственного кинетического момента гироскопа под действием моментов внешних сил называется прецессией гироскопа и описывается векторным уравнением

w

x H = M.

Здесь w – вектор угловой скорости прецессии, H –

вектор собственного кинетического момента гироскопа, M – ортогональная к H составляющая вектора момента внешних сил, приложенных к гироскопу. Момент сил, приложенных со стороны ротора к подшипникам оси собственного вращения ротора, возникающий при изменении направления оси, называют гироскопическим моментом. Погрешность гироскопа измеряется скоростью ухода его оси от первоначального положения. Свободный гироскоп функционирует идеально лишь в том случае, если внешний момент M равен нулю.

1.1.2. Виды гироскопов и практическое применение

Высокоточный гироскоп может уверенно (с погрешностью 5 %) измерять скорость вращения Земли, однако если бы этот гироскоп оказался на Луне, то ему не удалось бы обнаружить вращение Луны, происходящее в 28 раз медленнее вращения Земли. Во времена Фуко не существовало средств для раскрутки ротора гироскопа до скоростей тысячи оборотов в минуту. Только в конце XIX века было предложено использовать для разгона и поддержания вращения ротора гироскопа электрический мотор, тем самым обеспечив возможность получения больших значений кинетического момента гироскопа H и его постоянства в течение неограниченного промежутка времени.

Перейти на страницу:

Похожие книги

100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Ошибки в оценке науки, или Как правильно использовать библиометрию
Ошибки в оценке науки, или Как правильно использовать библиометрию

Ив Жэнгра — профессор Квебекского университета в Монреале, один из основателей и научный директор канадской Обсерватории наук и технологий. В предлагаемой книге излагается ретроспективный взгляд на успехи и провалы наукометрических проектов, связанных с оценкой научной деятельности, использованием баз цитирования и бенчмаркинга. Автор в краткой и доступной форме излагает логику, историю и типичные ошибки в применении этих инструментов. Его позиция: несмотря на очевидную аналитическую ценность наукометрии в условиях стремительного роста и дифференциации научных направлений, попытки применить ее к оценке эффективности работы отдельных научных учреждений на коротких временных интервалах почти с неизбежностью приводят к манипулированию наукометрическими показателями, направленному на искусственное завышение позиций в рейтингах. Основной текст книги дополнен новой статьей Жэнгра со сходной тематикой и эссе, написанным в соавторстве с Олесей Кирчик и Венсаном Ларивьером, об уровне заметности советских и российских научных публикаций в международном индексе цитирования Web of Science. Издание будет интересно как научным администраторам, так и ученым, пребывающим в ситуации реформы системы оценки научной эффективности.

Ив Жэнгра

Технические науки
Сертификация сложных технических систем
Сертификация сложных технических систем

Освещаются основные понятия и процедуры сертификации, мировая и отечественная практика ее проведения. Видное место отведено специальным системам сертификации, прежде всего сертификации сложных технических систем. Рассматривается взаимосвязь сертификации именеджмента. Показано место систем обеспечения качества продукции в управлении организациями. Даются важнейшие нормативные и методические документы по стандартизации, сертификации и аккредитации. Для студентов высших учебных заведений, обучающихся по направлению `Метрология, стандартизация, сертификация` и специальности `Стандартизация и сертификация`. Представляет интерес для специалистов в области управления качеством продукции и сертификации.

Анатолий Михайлович Шолом , Анатолий Шолом , Владимир Викторович Смирнов , Владимир Смирнов , Иосиф Аронов , Лидия Александровская

Технические науки / Образование и наука
Металлоискатели
Металлоискатели

Книга предназначена для радиолюбителей, интересующихся вопросами поиска различных металлических предметов с помощью специального оборудования, к которому, в первую очередь, относятся металлоискатели.В соответствующих разделах приведены принципиальные схемы и рисунки печатных плат как простых, так и более сложных конструкций. Даны рекомендации по самостоятельному изготовлению и настройке металлоискателей, а также советы по их практическому применению.Настоящее издание будет полезно не только подготовленным радиолюбителям, но и всем читателям, интересующимся данной темой, поскольку большинство представленных конструкций может изготовить как взрослый, так и школьник, никогда не державший в руках паяльник.

Михаил Васильевич Адаменко

Радиоэлектроника / Технические науки / Образование и наука