Читаем Мир астрономии. Рассказы о Вселенной, звездах и галактиках полностью

Ну а дальше уже приходится работать с законом Хаббла, гласящим, что скорость разбегания галактик пропорциональна их расстоянию от нас V = Hr, где H — постоянная Хаббла. Скорость измеряется по величине красного смещения, о котором у нас шел разговор в первой главе. Но для того чтобы измерять красное смещение, астрономы должны были научиться работать в различных диапазонах спектра. Что это значит?

Явление дисперсии — зависимости коэффициента преломления света от длины волны — известно уже давно. Еще Ньютон в 1665 году, используя стеклянную призму, разложил солнечный свет на отдельные цвета — получил первую спектральную картину. Но действительное начало спектроскопических работ в астрономии мы должны связать с именем баварского самоучки И. Фраунгофера, который, тщательно изучая преломление света различных цветов призмами, открыл в спектре Солнца более 500 темных линий, названных впоследствии его именем. Фраунгофер был уверен, «…что причина возникновения этих линий и полос лежит в самой природе солнечного света».

Однако объяснить природу этих линий Фраунгофер не смог. Лишь в 50-х годах XIX века, после смерти Фраунгофера, благодаря работам Кирхгофа и Бунзена были установлены основные законы спектрального анализа. К этому времени число фраунгоферовых линий в спектре Солнца уже исчислялось тысячами. Кирхгофу удалось отождествить часть этих линий с эмиссионными линиями некоторых земных элементов. Поясним, что это такое.

Если вы подойдете к своей газовой плите и в голубое пламя горелки поместите щепотку соли, пламя немедленно окрасится в желтый цвет. Этот желтый цвет обязан своим происхождением парам натрия (химическая формула поваренной соли — NaCl). Вы наблюдаете таким образом эмиссию — излучение паров натрия. Но если вы будете пропускать свет от источника с более высокой температурой, чем температура пара натрия, вы получите линию поглощения на той самой длине волны (в желтой части спектра), на которой ранее излучал Na. Именно эти явления поглощения и эмиссии излучения и лежат, по сути дела, в основе спектрального анализа, получившего бурное развитие в астрономии после работ Кирхгофа.


Рефлектор У. Парсонса.

Спектральный анализ предоставил поразительную возможность детального определения химического состава атмосфер далеких планет и звезд. Поскольку спектральные линии для каждого элемента точно известны, любые их сдвиги за счет доплеровского эффекта дают возможность вычислять скорость объекта.

Но мне хотелось бы подчеркнуть незаменимость спектрального анализа для астрономии как инструмента при определении химического состава и физических свойств далеких небесных объектов. Ведь сравнительно недавно, 150 лет тому назад, французский философ-позитивист О. Конт писал о небесных телах в своем курсе философии: «Никогда никакими средствами мы не сможем изучать их химический состав… любое знание температур звезд неизбежно должно быть навсегда скрыто от нас». Сегодня благодаря астрономическим наблюдениям с использованием спектральной аппаратуры мы знаем и химический состав, и температуру звезд.

Прошло лишь 50 лет после появления «пророческого» высказывания Конта, а физика и астрономия нанесли ему решительный удар. В 1893 году было установлено, что чем выше температура излучающего тела, тем больше максимум излучения сдвинут в сторону коротких волн (закон Вина). Поразительно, что всего за двадцать лет до открытия этого физического закона известный ватиканский астроном патер Секки оценивал температуру Солнца в несколько миллионов градусов, и в это же время для того же Солнца французский физик Пуйе давал цифру в 2000 °C.

Смысл закона Вина состоит в следующем. Вы начинаете нагревать кусок железа. Сначала он темный, затем при температуре 600° появляется так называемое вишневое каление. Будем повышать температуру — появится красное каление, а перед началом плавления — желтое и белое. (Вспомним известное выражение «добела раскаленный».)

Но красный цвет соответствует более длинным волнам в оптическом спектре. Затем идет оранжевый с более короткими длинами волн, чем у красного, длина волны желтого цвета еще короче. Чем выше температура излучателя, тем более короткие длины волн соответствуют максимуму энергии в спектре излучения.

Открытие этого закона незамедлительно позволило установить правильную температуру нашего Солнца. Она оказалась равной примерно 6000 °C. А сейчас мы знаем температуры многих тысяч звезд, знаем химические элементы, присутствующие в этих звездах.

Итак, оптические исследования с помощью телескопов, несомненно, явились фундаментом всей современной астрономии. Они позволили установить размеры планет и расстояния до них, расстояния до звезд и галактик, определить химический состав звезд и температуру. Но, пожалуй, самое главное — то, что наблюдательная астрономия помогла человечеству раздвинуть границы мира и создать объективно верную картину Вселенной.

Перейти на страницу:

Похожие книги

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
Великий замысел
Великий замысел

Все мы существуем лишь непродолжительный период времени и на его протяжении способны исследовать лишь небольшую часть мироздания. Но люди — существа любопытные. Мы задаемся вопросами, мы ищем на них ответы. Живя в этом огромном мире, который бывает то добрым, то жестоким, и вглядываясь в бесконечное небо, люди постоянно задаются множеством вопросов: Как мы можем понять мир, в котором оказались? Как ведёт себя Вселенная? Какова природа реальности? Откуда всё это возникло? Нуждалась ли Вселенная в создателе? Многие из нас не тратят много времени на эти вопросы, но почти все из нас когда-либо об этом задумывались.Один из самых известных ученых нашего времени — Стивен Хокинг написал книгу, продолжающую тему, начатую в его предыдущих книгах. Хокинг ставит вопросы, на которые потом отвечает, прибегая к помощи последних достижений в области науки — Что положило начало существованию? Почему мы существуем? Почему законы физики именно такие, как они есть? Можем ли мы ответить на все эти вопросы, не прибегая к помощи «божественной интервенции»?

Леонард Млодинов , Стивен Уильям Хокинг

Астрономия и Космос
Мир в ореховой скорлупке
Мир в ореховой скорлупке

Один из самых блестящих ученых нашего времени, известный не только смелостью идей, но также ясностью и остроумием их выражения, Хокинг увлекает нас к переднему краю исследований, где правда кажется причудливее вымысла, чтобы объяснить простыми словами принципы, которые управляют Вселенной.Великолепные цветные иллюстрации служат нам вехами в этом странствии по Стране чудес, где частицы, мембраны и струны движутся в одиннадцати измерениях, где черные дыры испаряются, и где космическое семя, из которого выросла наша Вселенная, было крохотным орешком.Книга-журнал состоит из иллюстраций (215), со вставками текста. Поэтому размер ее больше стандартной fb2 книги. Иллюстрации вычищены и подготовлены для устройств с экранами от 6" (800x600) и более, для чтения рекомендуется CoolReader.Просьба НЕ пересжимать иллюстрации, т. к. они уже сжаты по максимуму (где-то Png с 15 цветами и более, где то jpg с прогрессивной палитрой с q. от 50–90). Делать размер иллюстраций меньше не имеет смысла — текст на илл. будет не читаемый, во вторых — именно по этой причине книга переделана с нуля, — в библиотеке была только версия с мелкими илл. плохого качества. Макс. размер картинок: 760(высота) x 570(ширина). Книга распознавалась с ~300mb pdf, часть картинок были заменены на идент. с сети (качество лучше), часть объединены т. к. иногда одна илл. — на двух страницах бум. книги. Также исправлена последовательность илл. в тексте — в рус. оригинале они шли на 2 стр. раньше, здесь илл. идет сразу после ссылки в тексте. Psychedelic

Стивен Уильям Хокинг

Астрономия и Космос