Читаем Мир физики и физика мира. Простые законы мироздания полностью

К концу XIX века статус физики, как тогда казалось, окончательно определился. Уже были открыты механика Ньютона, электромагнетизм и термодинамика (о которой я расскажу в главе 6), и стало ясно, что все эти три области в совокупности прекрасно объясняют движение и поведение предметов обычного размера и практически все явления, которые мы наблюдаем вокруг, от пушечного ядра до часов, от грозы до паровоза, от магнита до мотора, от маятника до планет. Изучением всех этих объектов в совокупности занимается так называемая классическая физика, и это то, что нам в основном до сих пор преподают в школе. Однако классическая физика, как бы она ни была хороша, не дает нам полной картины. Когда ученые обратили внимание на микроскопические составляющие материи, атомы и молекулы, они открыли новые явления, которые не удавалось объяснить с помощью известной им физики. Казалось, что законы и уравнения, которыми они привыкли пользоваться, больше не работают. Физике предстояло испытать тектонический сдвиг.

Первый крупный теоретический прорыв осуществил немецкий физик Макс Планк, предложив концепцию кванта. В своей лекции в декабре 1900 года он выдвинул революционную идею о том, что тепловая энергия, излучаемая нагретым телом, связана с частотой вибрации его атомов и, соответственно, эта энергия носит скорее прерывистый, чем непрерывный характер и испускается в виде дискретных порций, которые получили название квантов. Через несколько лет Эйнштейн предположил, что дискретный характер носит не только излучение Планка; электромагнитное излучение, включая свет, тоже существует в виде квантов. Теперь мы называем единичные кванты света – частицы световой энергии – фотонами.

Предположение Эйнштейна о квантовой природе света было не просто догадкой. Оно позволило объяснить одну из величайших научных тайн того времени под названием «фотоэлектрический эффект» – явление, когда свет при попадании на металлическую поверхность может выбивать электроны из атомов металла. Этот эффект не удалось бы объяснить, если бы свет имел волновую природу; в этом случае увеличение интенсивности света (или его яркости) приводило бы к увеличению его энергии и мы могли бы ожидать, что выбиваемые из металла электроны вылетали бы с большей скоростью. Однако это не так. Их просто вылетает больше. Но если энергия света пропорциональна его интенсивности, как это предполагал Эйнштейн, то увеличение его частоты (например, переход от видимого к невидимому спектру) придает выбиваемым электронам больше энергии. И наоборот, сохраняя частоту (цвет) света и увеличивая его яркость, мы только увеличим число фотонов, а также число выбиваемых электронов. Именно это и наблюдается в экспериментах, и тут идея Эйнштейна пришлась совершенно впору.

И все же и тогда и теперь многие данные говорят о том, что свет скорее представляет собой волны, а не поток частиц. Так где же истина? Свет – это волна и частица? Ответ, который, как это ни удивительно, противоречит всякой интуиции и логическим соображениям, таков: свет может вести себя то так, то этак, в зависимости от того, как мы на него смотрим и какого рода эксперименты ставим.

А ведь такую шизофреническую природу имеет не только свет. Частицы материи, например электроны, тоже могут проявлять волновую природу. Это общее понятие, которое уже более 100 лет подвергается всяческому тестированию и проверке, известно как корпускулярно-волновой дуализм и является одной из центральных идей квантовой механики. Это не означает, что электрон в один и тот же момент времени является частицей и волной. Если мы поставим эксперимент с целью подтверждения корпускулярной природы электронов, то обнаружится, что они себя так и ведут. Но если мы затем поставим другой эксперимент: проверить, не обладают ли электроны волновыми свойствами (такими как дифракция, рефракция или волновая интерференция), то увидим, что они ведут себя как волны. Дело только в том, что мы не можем осуществить эксперимент, который продемонстрировал бы корпускулярные и волновые свойства электронов одновременно. Здесь абсолютно необходимо подчеркнуть, что, хотя квантовая механика позволяет довольно точно предсказать исход таких экспериментов, она не говорит нам самого главного: что же представляет собой электрон. Она позволяет нам только описать то, что мы видим, когда ставим определенный эксперимент для его исследования. Единственная причина того, что физики больше не сходят с ума от этой двойственности, – это то, что мы научились с этим жить. Этот баланс между тем, сколько мы можем одновременно знать о корпускулярной природе частицы (ее положении в пространстве) и ее волновой природе (с какой скоростью она движется), регулируется принципом неопределенности Гейзенберга, который считается одной из важнейших научных идей, лежащей в основе квантовой механики.

Перейти на страницу:

Все книги серии New Science

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
Идеальная теория. Битва за общую теорию относительности
Идеальная теория. Битва за общую теорию относительности

Каждый человек в мире слышал что-то о знаменитой теории относительности, но мало кто понимает ее сущность. А ведь теория Альберта Эйнштейна совершила переворот не только в физике, но и во всей современной науке, полностью изменила наш взгляд на мир! Революционная идея Эйнштейна об объединении времени и пространства вот уже более ста лет остается источником восторгов и разочарований, сюрпризов и гениальных озарений для самых пытливых умов.История пути к пониманию этой всеобъемлющей теории сама по себе необыкновенна, и поэтому ее следует рассказать миру. Британский астрофизик Педро Феррейра решил повторить успех Стивена Хокинга и написал научно-популярную книгу, в которой доходчиво объясняет людям, далеким от сложных материй, что такое теория относительности и почему споры вокруг нее не утихают до сих пор.

Педро Феррейра

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное
Биоцентризм. Как жизнь создает Вселенную
Биоцентризм. Как жизнь создает Вселенную

Время от времени какая-нибудь простая, но радикальная идея сотрясает основы научного знания. Ошеломляющее открытие того, что мир, оказывается, не плоский, поставило под вопрос, а затем совершенно изменило мироощущение и самоощущение человека. В настоящее время все западное естествознание вновь переживает очередное кардинальное изменение, сталкиваясь с новыми экспериментальными находками квантовой теории. Книга «Биоцентризм. Как жизнь создает Вселенную» довершает эту смену парадигмы, вновь переворачивая мир с ног на голову. Авторы берутся утверждать, что это жизнь создает Вселенную, а не наоборот.Согласно этой теории жизнь – не просто побочный продукт, появившийся в сложном взаимодействии физических законов. Авторы приглашают читателя в, казалось бы, невероятное, но решительно необходимое путешествие через неизвестную Вселенную – нашу собственную. Рассматривая проблемы то с биологической, то с астрономической точки зрения, книга помогает нам выбраться из тех застенков, в которые западная наука совершенно ненамеренно сама себя заточила. «Биоцентризм. Как жизнь создает Вселенную» заставит читателя полностью пересмотреть свои самые важные взгляды о времени, пространстве и даже о смерти. В то же время книга освобождает нас от устаревшего представления, согласно которому жизнь – это всего лишь химические взаимодействия углерода и горстки других элементов. Прочитав эту книгу, вы уже никогда не будете воспринимать реальность как прежде.

Боб Берман , Роберт Ланца

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Биология / Прочая научная литература / Образование и наука

Похожие книги

Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература