Читаем Мивары: 25 лет создания искусственного интеллекта полностью

Если говорить о миварах и перечисленных выше формализмах Фреге, Рассела и Уайтхеда, Тарского и многих других, то надо помнить, что наука развивается по спирали и старые формализмы требуют своего продолжения на новом витке. Упомянутые выше исчисление предикатов и другие ранние фундаментальные формализмы при необходимости могут быть реализованы и в правилах (отношениях) миварных сетей. Только надо помнить, что есть и другие формализмы представления информации для ИИ, а у исчисления предикатов первого порядка есть достаточно жесткие ограничения и не очень большие возможности, если вспоминать не об "игрушечных" задачах, а говорить о создании глобальных познающе-диагностических системах и СПАКОД, решающих сложные логико-вычислительные задачи в реальном времени. К сожалению, для достаточно большого количества ученых в нашей области исчисление предикатов так и остается верхом развития, что тормозит применение других более мощных и современных научных теорий. У того же Люгера подробно изложены биологические и социальные модели интеллекта, многоагентные системы, которые опираются не на исчисление предикатов, а на совсем другие и гораздо более современные научные теории [264, стр. 38-42]. Там же приведено интересное и новое определение термина "интеллект", которое отличается от традиционного подхода логиков и сторонников исчисления предикатов первого порядка. "Хассерл, отец феноменологии, рассматривал абстракции как объекты, укоренившиеся в конкретном "жизненном мире"… интеллект заключался не в знании истины, а в знании, как вести себя в постоянно меняющемся и развивающемся мире. Таким образом… интеллект рассматривается с точки зрения выживания в мире, чем как набор логических утверждений о мире (в сочетании со схемой вывода)" [264, стр. 39].

Выделим из описания различных моделей интеллекта Люгера [264] еще несколько, наиболее важных и актуальных для миварного подхода и его различных практических приложений. В нейронных моделях интеллекта упор делается на способность мозга адаптироваться к миру, в котором он существует, с помощью изменений связей между отдельными нейронами. Знание в таких системах не выражается логическими конструкциями, а представляется в неявной форме как свойство конфигураций таких взаимосвязей. Иная модель интеллекта, заимствованная из биологии, навеяна процессами адаптации видов к окружающей среде. В разработках искусственной жизни и генетических алгоритмов программы не решают задачи посредством логических рассуждений, а порождают популяции соревнующихся между собой решений-кандидатов и заставляют их совершенствоваться на основе биологической эволюции. Социальные системы дают еще одно модельное представление интеллекта с помощью глобального поведения, которое бы не удалось решить отдельным их членам. Есть два аспекта:

1) корни интеллекта связаны с культурой и обществом, а следовательно, разум является эмерджентным;

2) разумное поведение формируется совместными действиями большого числа очень простых взаимодействующих полуавтономных индивидуумов, или агентов.

Взаимодействие агентов создает интеллект [264, стр. 40]. Люгер Дж. определяет агента как элемент сообщества, который может воспринимать аспекты своего окружения и взаимодействовать с этой окружающей средой либо непосредственно, либо путем сотрудничества с другими агентами. Большинство интеллектуальных методов решений практических задач требуют наличия разнообразных агентов. Это могут быть простые агенты-механизмы, задача которых – собирать и передавать информацию; агенты-координаторы, которые обеспечивают взаимодействие между другими агентами; агенты поиска, которые перебирают пакеты информации и возвращают какие-то избранные частицы; обучающие агенты, которые на основе полученной информации формируют обобщающие концепции; и принимающие решения агенты, которые раздают задания и делают выводы на основе ограниченной информации и обработки. Получается, что с точки зрения определения интеллекта агентов можно рассматривать как механизмы, обеспечивающие выработку решения в условиях ограниченных ресурсов и процессорных мощностей. Для разработки и построения таких сообществ агентов необходимы: структуры для представления информации, стратегии поиска в пространстве альтернативных решений и архитектура, обеспечивающая взаимодействие агентов [264, стр. 41]. Технология многоагентных систем уже фактически использована для создания познающе-диагностических систем, хотя в явном виде подобные названия и термин "агенты" используются не всегда.

Как видно, в современной теории ИИ кроме предикатного подхода уже разработано большое количество других подходов, кардинально отличающихся от исчисления предикатов и т.п. Подчеркнем, что продукционный подход и его развитие в миварных сетях являются еще одной альтернативой исчислению предикатов при создании ИИ.

2. Основные преимущества миварного подхода

2.1. Обзор достижений в области искусственного интеллекта

Перейти на страницу:

Похожие книги

Стив Джобс. Уроки лидерства
Стив Джобс. Уроки лидерства

Эта книга – редкая возможность увидеть Стива Джобса таким, каким его видели лишь его самые близкие сотрудники, и разгадать загадку этого легендарного человека. Это возможность понять и освоить оригинальный стиль лидерства Джобса, благодаря которому Apple стала одной из величайших компаний и смогла выпускать продукты, изменившие нашу жизнь. Автор книги, Джей Эллиот, бывший старший вице-президент компании Apple, долгое время работал бок о бок со Стивом Джобсом и сформулировал главные уроки «iЛидерства», которые помогут совершить прорыв компании любого размера и из любой отрасли. Интуитивный и творческий подход Джобса, о котором рассказывается в этой книге, позволит вам преобразить свой бизнес и свою жизнь.Для широкого круга читателей – для всех, кто хочет воспользоваться уроками выдающегося бизнес-лидера.

Виктория Шилкина , Вильям Л Саймон , Вильям Л. Саймон , Джей Эллиот

Деловая литература / Биографии и Мемуары / Публицистика / Прочая компьютерная литература / Управление, подбор персонала / Документальное / Финансы и бизнес / Книги по IT
Как восстановить не читающийся CD?
Как восстановить не читающийся CD?

Лазерные диски – не слишком-то надежные носители информации. Даже при бережном обращении с ними вы не застрахованы от появления царапин и загрязнения поверхности (порой диск фрезерует непосредственно сам привод и вы бессильны этому противостоять). Но даже вполне нормальный на вид диск может содержать внутренние дефекты, приводящие к его полной или частичной не читаемости на штатных приводах. Особенно это актуально для CD-R/CD-RW дисков, качество изготовления которых все еще оставляет желать лучшего, а процесс записи сопряжен с появлением различного рода ошибок.Однако даже при наличии физических разрушений поверхности лазерный диск может вполне нормально читаться за счет огромной избыточности хранящихся на нем данных, но затем, по мере разрастания дефектов, корректирующей способности кодов Рида-Соломона неожиданно перестает хватать и диск без всяких видимых причин отказывает читаться, а то и вовсе не опознается приводом.К счастью, в подавляющем большинстве случаев хранимую на диске информацию все еще можно спасти и эта статья рассказывает как.

Крис Касперски

Учебные пособия, самоучители / Руководства / Прочая компьютерная литература / Книги по IT / Словари и Энциклопедии