Читаем Мивары: 25 лет создания искусственного интеллекта полностью

Тогда, слово – это вершина горы, а вся гора сама по себе и является контекстом. Если кто-то больше любит море или океан, то вместо гор можно использовать айсберги, хотя система гор все же, на наш взгляд, более адекватна предлагаемой модели. Итак, в процессе обучения человек "выращивает" эти горы у себя в голове, а общается потом внешне только словами, как бы перепрыгивая с вершины на вершину или связывая эти вершины огромными длинными виртуальными мостами. В процессе своего взросления и обучения человек "выращивает новые горы", создавая целые системы таких гор, но на основе общих здравых подходов и признаков. Высота каждой такой горы превышает, допустим, стоэтажный дом. Эти этажи образно соответствуют уровням абстракции в описаниях слов и языковых моделей. Для того чтобы восстановить в компьютере такую горную систему надо сделать ее полноразмерный математический макет. Такой макет можно делать, спускаясь этаж за этажом с вершины горы до ее основания и переходя на другую гору через долины… Современные методы семантической обработки позволяют сделать, условно говоря, только двух- трехэтажную по высоте модель такой горной смысловой языковой системы. Вот и получаем принципиальное ограничение: надо наращивать в высоту по уровням абстракции наши языковые модели, а мы остановились на втором этаже семантики и даже не собираемся двигаться далее. Спасибо онтологиям?

Вывод: для адекватной работы с естественным языком нужны более сложные модели, принципиально новые и на несколько порядков более сложные модели на основе многомерных баз данных с поддержкой самых разнообразных отношений. Возможно, что понадобится даже работа с бесконечными плоскостями описания сущностей и т.п. В настоящее время таким требованиям отвечает только миварный подход с многомерным информационным пространством и динамически изменяющейся структурой. Реализация языковых моделей на больших вычислительных кластерах (или ГРИД-системах) на основе миварного подхода должна приблизить нас к созданию автоматической системы, понимающей и разговаривающей с людьми на естественном языке. Напомним, что эта задача сравнима по сложности с созданием самого ИИ.

Возможно, что создание таких языковых моделей, вернее символьных моделей в миварном пространстве, позволит создать электронных двойников людей для вечной жизни, которые предсказаны многими фантастами. Впрочем, эти проблемы возникнут потом, а сейчас надо приступать к реализации построения символьных языковых моделей в миварном информационном пространстве, некоторым прототипом которых являются разработки Активных миварных интернет-энциклопедий, которые к описанию фактов в ВИКИ-педии будут добавлять новые отношения, связи, взаимодействия и т.д. Более подробно эти вопросы рассмотрены при описании миварной энциклопедии и миварной модели человеческого мышления.

Опять получаем, что именно миварный подход является принципиально новым и ключевым фундаментальным направлением для решения многих, практически всех описанных в этой работе, проблем в научной области ИИ.

2.3. Представление знаний в ИИ. Семантические сети как альтернатива исчислению предикатов

Существует Гипотеза о физической символьной системе Ньюэлла и Саймона, из которой следует, что интеллектуальная деятельность как человека, так и машины осуществляется на основе следующих средств [264, стр. 58]:

1. Символьные шаблоны, предназначенные для описания важнейших аспектов области определения задачи.

2. Операции с этими шаблонами, позволяющие генерировать потенциальные решения проблем.

3. Поиск с целью выбора решения из числа всех возможных.

Дж. Люгер утверждает, что эта гипотеза лежит в основе попыток создания умных машин и неявно различает понятия шаблонов, сформированных путем упорядочивания символов, и среды, в которой они реализованы. Если уровень интеллекта определяется исключительно структурой системы символов, то любая среда, которая успешно реализует правильные шаблоны и процессы, достигнет этого уровня интеллекта, независимо от того, составлена ли она из нейронов, логических цепей, или это просто механическая игрушка. Согласно тезису Черча о вычислимости по Тьюрингу, компьютеры способны осуществить любой эффективно описанный процесс обработки символьной информации. Получается, что правильно запрограммированный компьютер обладает интеллектом [264, стр. 58]. Мы поддерживаем гипотезу о физической системе и считаем, что на основе миварного подхода в скором времени получится реализовать достаточно сложную обработку информации, которую можно будет признать интеллектуальной.

Важно и то, что, по Дж. Люгеру, в этой гипотезе указаны главные проблемы исследований в области ИИ:

· представления знаний, т.е. определения структур, символов и операций, необходимых для интеллектуального решения задачи;

· поиска, т.е. разработки стратегий для эффективного и правильного поиска потенциальных решений, сгенерированных этими структурами и операциями.

Перейти на страницу:

Похожие книги

Стив Джобс. Уроки лидерства
Стив Джобс. Уроки лидерства

Эта книга – редкая возможность увидеть Стива Джобса таким, каким его видели лишь его самые близкие сотрудники, и разгадать загадку этого легендарного человека. Это возможность понять и освоить оригинальный стиль лидерства Джобса, благодаря которому Apple стала одной из величайших компаний и смогла выпускать продукты, изменившие нашу жизнь. Автор книги, Джей Эллиот, бывший старший вице-президент компании Apple, долгое время работал бок о бок со Стивом Джобсом и сформулировал главные уроки «iЛидерства», которые помогут совершить прорыв компании любого размера и из любой отрасли. Интуитивный и творческий подход Джобса, о котором рассказывается в этой книге, позволит вам преобразить свой бизнес и свою жизнь.Для широкого круга читателей – для всех, кто хочет воспользоваться уроками выдающегося бизнес-лидера.

Виктория Шилкина , Вильям Л Саймон , Вильям Л. Саймон , Джей Эллиот

Деловая литература / Биографии и Мемуары / Публицистика / Прочая компьютерная литература / Управление, подбор персонала / Документальное / Финансы и бизнес / Книги по IT
Как восстановить не читающийся CD?
Как восстановить не читающийся CD?

Лазерные диски – не слишком-то надежные носители информации. Даже при бережном обращении с ними вы не застрахованы от появления царапин и загрязнения поверхности (порой диск фрезерует непосредственно сам привод и вы бессильны этому противостоять). Но даже вполне нормальный на вид диск может содержать внутренние дефекты, приводящие к его полной или частичной не читаемости на штатных приводах. Особенно это актуально для CD-R/CD-RW дисков, качество изготовления которых все еще оставляет желать лучшего, а процесс записи сопряжен с появлением различного рода ошибок.Однако даже при наличии физических разрушений поверхности лазерный диск может вполне нормально читаться за счет огромной избыточности хранящихся на нем данных, но затем, по мере разрастания дефектов, корректирующей способности кодов Рида-Соломона неожиданно перестает хватать и диск без всяких видимых причин отказывает читаться, а то и вовсе не опознается приводом.К счастью, в подавляющем большинстве случаев хранимую на диске информацию все еще можно спасти и эта статья рассказывает как.

Крис Касперски

Учебные пособия, самоучители / Руководства / Прочая компьютерная литература / Книги по IT / Словари и Энциклопедии