Читаем МЛЕЧНЫЙ ПУТЬ №2, 2018(24) полностью

В работах по созданию квантовых компьютеров традиционно используется микроволновое электромагнитное излучение (фотоны). Однако не так давно появилось альтернативное направление, на основе акустических волн (фононов). Несмотря на то, что квантовоакустический подход пока развит значительно слабее микроволнового, у него есть преимущества, которые могут пригодиться в будущем.

Физики из МФТИ, МИСиС, МГПУ и Лондонского университета разработали квантовую систему, в которой кубит (наименьший элемент для хранения информации в квантовом компьютере) взаимодействует с акустическими волнами в резонаторе. Их исследование демонстрирует, что явления и эффекты квантовой оптики работают на акустике, и позволяет использовать в будущем подобные устройства для разработки квантовых компьютеров. Статья с результатами опубликована в Physical Review Letters.

Авторы работы изучали взаимодействие трансмона – одного из видов сверхпроводящих кубитов – с поверхностными акустическими волнами в резонаторе. Эти волны подобны волнам на поверхности моря, но возникают они на поверхности твердого тела.

Собранный чип представляет собой пьезоэлектрическую подложку из кварца, на которую напылена алюминиевая схема из трансмона, резонатора (два зеркала, отражающие волны), излучателя и приемника. Все эти устройства состоят из больших массивов узких металлических полос. Конструкцию поместили в криостат, охлажденный до нескольких десятков милликельвин, то есть до температуры, близкой к абсолютному нулю.

Пьезоэлектрик – материал, преобразующий электромагнитное воздействие в механическое и наоборот. Источник порождает на пьезоэлектрике поверхностную акустическую волну, которая бежит между зеркалами резонатора, отражаясь от них. Резонатор поддерживает и усиливает волны определенных длин. Внутри резонатора находится трансмон с двумя энергетическими уровнями. Между этими уровнями может происходить переход, то есть трансмон ведет себя как искусственный атом.

Кубит взаимодействует с волнами в резонаторе. Он может переходить в возбужденное или основное состояние, поглощая из резонатора энергию или излучая в него энергию с частотой, равной частоте перехода кубита. При этом резонансная частота самого резонатора изменяется в зависимости от состояния кубита. Измеряя характеристики резонатора, можно производить чтение информации с кубита.

Скорость распространения акустических волн в 100 тыс. раз меньше скорости света, следовательно, и длины получающихся волн во столько же раз меньше. Размер резонатора должен «подходить» под длину волны. На практике он должен быть значительно больше ее. А чем больше резонатор, тем больше в нем оказывается дефектов, которые всегда присутствуют на поверхности кристалла. Эти дефекты приводят к короткому времени жизни состояния кубита, что мешает производить масштабные квантовые вычисления и тормозит создание квантового компьютера. В микроволновой квантовой системе длина волны будет составлять в лучшем случае около одного сантиметра. В случае с акустикой длина волны составляет около 1 микрометра (1 мкм = 10-6 

м), что позволяет делать высокодобротные резонаторы размером 300 мкм. В данной работе длина волны равна 0.98 мкм.

Из-за большой длины волны в микроволновый электромагнитный резонатор сложно поместить даже два кубита, которые бы взаимодействовали с ним на разных частотах. Поэтому в микроволновом случае для каждого кубита приходится делать отдельный резонатор.

В акустике можно сделать несколько кубитов, немного отличающихся по частоте перехода, и разместить их в одном механическом резонаторе. Поэтому квантовый чип на звуковых волнах должен быть гораздо компактнее тех, что производят сейчас. К тому же акустические устройства не чувствительны к электромагнитному шуму, что может решить проблему чувствительности к нему микроволновых квантово-вычислительных систем.

Ранее никто не связывал кубит с резонатором на поверхностных акустических волнах в квантовом режиме. Были отдельно изучены резонаторы такого типа, но без кубита, и отдельно кубиты с поверхностно акустическими волнами, но бегущими, не в резонаторе. На объемных резонаторах квантовый режим был показан, но дело дальше не пошло, возможно, из-за сложности производства. В данной работе исследователи использовали однослойную структуру, которую проще изготовить с помощью имеющихся технологий.

Исследование было выполнено в лаборатории искусственных квантовых систем МФТИ.

По материалам пресс релиза МФТИ


Графен раскрывает секреты


Разгадка причин Оже-рекомбинации электронов и дырок в графене делает возможной создание лазеров на его основе.

Кристаллическая структура графена представляет собой двумерную гексагональную кристаллическую решетку. Носителями заряда в полупроводнике служат электроны и дырки. Встретившись, они взаимно уничтожают друг друга, что физики называют рекомбинацией. Электрон при этом теряет энергию, судьба которой может быть различной.

Перейти на страницу:

Похожие книги

Зараза
Зараза

Меня зовут Андрей Гагарин — позывной «Космос».Моя младшая сестра — журналистка, она верит в правду, сует нос в чужие дела и не знает, когда вовремя остановиться. Она пропала без вести во время командировки в Сьерра-Леоне, где в очередной раз вспыхнула какая-то эпидемия.Под видом помощника популярного блогера я пробрался на последний гуманитарный рейс МЧС, чтобы пройти путем сестры, найти ее и вернуть домой.Мне не привыкать участвовать в боевых спасательных операциях, а ковид или какая другая зараза меня не остановит, но я даже предположить не мог, что попаду в эпицентр самого настоящего зомбиапокалипсиса. А против меня будут не только зомби, но и обезумевшие мародеры, туземные колдуны и мощь огромной корпорации, скрывающей свои тайны.

Алексей Филиппов , Евгений Александрович Гарцевич , Наталья Александровна Пашова , Сергей Тютюнник , Софья Владимировна Рыбкина

Фантастика / Современная русская и зарубежная проза / Постапокалипсис / Социально-психологическая фантастика / Современная проза