Джозефсоновскую генерацию можно понять достаточно наглядно, используя лишь минимум квантовых представлений. Когда под действием приложенного к контакту постоянного электрического напряжения
Возможен, конечно, и обратный процесс — джозефсоновское поглощение. Таким образом, джозефсоновский контакт можно использовать как генератор электромагнитных волн или как приемник (эти генераторы и приемники могут работать в диапазонах частот, не достижимых другими методами). Широкое применение получил и первый эффект Джозефсона, его используют для измерения чрезвычайно малых магнитных полей и токов.
Солитоны в длинных джозефсоновских переходах
Выше упоминалось, что джозефсоновский контакт математически эквивалентен маятнику. Чтобы понять это, вспомним, что у контакта есть определенная емкость
Полный ток, текущий через контакт, равен сумме джозефсоновского тока, тока смещения и нормального тока. Выражая все эти точки через φ, легко найти уравнение, описывающее зависимость фазы φ от времени.
Читатель может без труда получить это уравнение самостоятельно:
Здесь
Нетрудно понять, как построить цепочку из джозефсоновских контактов, совершенно аналогичную цепочке связанных маятников. Ее электрическая схема изображена на рис. 7.18.
Индуктивность соединения двух контактов,
Реально солитоны наблюдают, конечно, не в такой системе. Рассмотрим две длинные и узкие сверхпроводящие пластины, между которыми имеется тонкий изолирующий слой (окисел) (рис. 7.19).
Каждый кусочек этого «сэндвича» образует джозефсоновский контакт. Все вместе они образуют систему, эквивалентную только что описанной цепочке связанных контактов. Однако непрерывная система, которую мы будем называть длинным джозефсоновским переходом (или ДДП), во многих отношениях проще и нагляднее дискретной цепочки. На рис. 7.19 изображено некое распределение магнитного поля в ДДП (стрелки) и соответствующие джозефсоновские токи (кружочки). Вспоминая, что магнитное поле не может проникать в сверхпроводник, легко понять, что поле направлено по оси
Если фаза вдоль перехода изменяется от 0 до 2π, то в переходе «сидит» солитон. Он может двигаться вдоль перехода, перенося квант магнитного потока. Существуют и многосолитонные состояния, переносящие целое число квантов потока. Их движения описываются уравнением «синус-Гордона». При отражении от края перехода солитон переворачивается, т. е. магнитное поле изменяет знак. Возникающий при этом импульс тока можно измерить; это не очень просто, но такие эксперименты делаются. Так как джозефсоновский солитон подобен солитону Френкеля, он «неразрушим» (число квантов потока, аналогичное «заряду» дислокаций, сохраняется). «Трение», связанное с туннелированием нормальных электронов, не изменяет его форму, а лишь замедляет его движение. Если нет внешней «силы» (напряжения, создаваемого внешним источником, подключенным к сверхпроводникам), солитон в конце концов остановится. Если изолирующий слой сделать неоднородным, то солитоны будут «цепляться» за неоднородности, и чтобы сдвинуть их, придется приложить достаточно большое внешнее напряжение. Таким образом, солитоны можно накапливать и пересылать вдоль перехода: естественно было бы попытаться использовать их для записи и передачи информации в системе большого числа связанных между собой ДДП.