где
Допустим, в некоторой отрасли А благодаря определенным технологическим и организационным улучшениям производительность выросла, но в других отраслях изменений не произошло. Если спрос на продукцию А при этом не меняется, то часть рабочей силы высвободится. Если высвободившийся труд перераспределится в отрасли с более низкой производительностью, например из обрабатывающей промышленности в розничную торговлю, то уровень агрегированной производительности труда может не измениться или даже снизиться. При этом рост производительности в А будет компенсирован увеличением доли менее производительных отраслей в общей рабочей силе [Bosworth, Triplett, 2007].
Эффект Баумоля представляет вклад перераспределения работников между отраслями с
Наряду с малореалистичными предпосылками о равенстве средней и предельной производительности труда традиционная декомпозиция (3–3) имеет и другие недостатки. Например, она не во всех случаях обеспечивает интуитивно понятную интерпретацию эффекта реаллокации. Можно выделить такой случай для отраслей с уровнем производительности
Для устранения интерпретационных сложностей в методе CSLS, являющемся модификацией TRAD, предлагается учитывать разность между отраслевым уровнем производительности и средним по экономике[33]
:Первое слагаемое – эффект внутриотраслевого роста производительности – в (3–3) и в (3–4) одинаковое. Отраслевые компоненты второго слагаемого, представляющего эффект Денисона, теперь отрицательные, если занятость растет в отрасли с производительностью ниже средней, поскольку в этом случае
почти во всех случаях, когда сокращается занятость в отрасли с уровнем производительности ниже среднего по экономике, вклад третьего слагаемого – эффекта Баумоля – будет положительным.
Каковы другие достоинства и недостатки рассмотренных выше методов? Серьезное достоинство подходов (3–3) и (3–4) – наличие опирающегося на них обширного массива исследований[34]
. Это позволяет сравнивать полученные результаты с оценками для большого числа стран и в разные периоды. Другим достоинством выступает возможность использовать более дезагрегированные данные. Это особенно важно, если обсуждается влияние учета неформальности на эффекты реаллокации.