На самом же деле это далеко не так. Возьмем для примера Английский Ллойд. Он существует как классификационное общество, т. е. наблюдающее за надлежащей прочностью корабля и его снабжения как во время постройки, так и во время службы, сто лет. Все случаи повреждения судов осматриваются его инспекторами, рассеянными по портам всего мира, и доводятся до сведения Главной лондонской конторы общества, в которой работают опытнейшие инженеры с обширной практикой и широким научным образованием.
Сейчас в списках Английского Ллойда находится около 35 тысяч пароходов всех наций; отсюда можно заключить, какой огромный материал и какое богатство опытных данных и «случаев» накопляется в его главной конторе.
Правила Ллойда не являются неизменными, они постоянно совершенствуются на основании действительного опыта плавания судов и анализа аварий или повреждений, ими понесенных. Более того, предоставлено отступать от буквы этих правил, подтверждая отступление расчетами, представляемыми на просмотр и одобрение главной конторы, в которой таким образом группируется и этот опыт, ведущий к постоянному совершенствованию правил. Ввиду этого правила периодически переиздаются, причем в них вносятся существенные изменения, польза которых оправдалась практикой; поэтому правила эти заслуживают внимательного и вдумчивого изучения.
12. Знаменитый английский натуралист лет 70 тому назад сказал: «Математика подобно жернову перемалывает лишь то, что под него засыплют». Вы видели, что в строгой «евклидовой» математике эта засыпка состоит из таких аксиом и постулатов, в справедливости которых инженер усомниться не может, а так как лишь эти аксиомы и постулаты «перемалываются» без добавления новых (а если что добавляется, то должно быть точно и ясно указано), то инженер и придает такую веру математическому доказательству.
Но здесь необходимо постоянно иметь в виду следующее обстоятельство: когда конкретный вопрос приводится к вопросу математическому, то всегда приходится делать ряд допущений, ибо математика вместе с механикой оперирует над объектами идеальными, лишь более или менее близкими к объектам реальным, к которым инженер будет прилагать полученные математические выводы. Ясно, что сколько бы ни было точно математическое решение, оно не может быть точнее тех приближенных предпосылок, на коих оно основано. Об этом часто забывают, делают вначале какое-нибудь грубое приближенное предположение или допущение, часто даже не оговорив таковое, а затем придают полученной формуле гораздо большее доверие, нежели она заслуживает, и это потому, что ее вывод сложный.
13. В очерке о П. А. Титове указано, что инженер должен непрестанно накоплять практический опыт, он должен выработать свой глазомер и сразу видеть, верен ли результат расчета, или нет.[74]
А вот другой пример. Знаменитый итальянский математик Туллио Леви Чивита, между прочим составивший превосходный курс механики, прочел года три тому назад в Вене, по приглашению Австрийского общества инженеров, доклад «О динамической нагрузке упругих систем».Изящнейшим с математической стороны выводами он установил некоторый предел динамической нагрузки, т. е. такое значение ее, которого она при данных обстоятельствах превзойти не может.
В формулы Леви Чивита входит продолжительность действия нагрузки, поэтому, например, получилось, что при проходе поезда по мосту динамическая нагрузка тем больше, чем скорость поезда меньше.
Как правоверный математик он верит своей формуле больше, нежели глазу и здравому смыслу, и не видит в ней наглядной нецелесообразности. Математически его формула верна, но она дает слишком большое значение сказанного верхнего предела, не имеющее практического значения.
Возьмем для примера знаменитый мост «Британия», построенный в 1848 г. Пролеты этого моста имеют длину около 450 фут., сечение моста коробчатое, со сплошными боковыми стенками и со сплошными, и притом двойными, верхнею и нижнею панелями, так что каждый пролет имеет аналогию с кораблем. Так вот по формуле Леви Чивита при проходе по этому мосту товарного поезда, идущего самым малым ходом, верхний предел динамической нагрузки получается 3000 т на погонный фут, т. е. 1 350 000 т на весь пролет. На самом же деле верхний предел этой нагрузки есть 3 т на погонный фут, т. е. 1350 на весь пролет. На эту нагрузку он и рассчитан его знаменитыми строителями Фарберном и Стефенсоном, и стоит с 1848 г. незыблемо, пропустив миллионы поездов с большими и малыми ходами.
Конечно, 3000 т больше 3 т, формула Леви Чивита верна, а какой в ней толк?
Всякий инженер заметил бы практическую непригодность формулы и, обратившись к предпосылкам, сделанным при ее выводе, легко увидел бы несоответствие действительности, а знаменитый математик, привыкший со всею «евклидовой» строгостью перемалывать аксиомы и постулаты, не заметил грубости одного из своих постулатов, сообразно которому и получил столь высокий верхний предел.