Читаем Мои воспоминания полностью

Петр Петрович Лазарев в своих как последних, так и более ранних работах стремится прилагать математику к изучению биологических явлений, именно в области восприятия внешних впечатлений, т. е. в области чувствительности наших органов чувств.

Будучи, подобно Сеченову, по университетскому образованию медиком, он не занялся практической деятельностью врача, а занялся наукою. Видимо, он еще в молодом возрасте почувствовал то, что Сеченов ощутил под старость, — необходимость солидных познаний по математике, и он по окончании медицинского факультета вновь обратился в студента, окончил физико-математический факультет, сперва стал заниматься физикой и лишь через 9 лет перешел к биологическим исследованиям.

Ясно, что как физик и математик он сознавал, что прежде всего надо для математической их обработки, как уже сказано, выражать изучаемые явления или изучаемые объекты числами, установив способы измерения этих объектов, т. е. нахождения отношения величины или интенсивности измеряемого объекта или явления к другому, с ними однородному, принятому за единицу сравнения.

Большая часть работ, о которых П. П. докладывал в Академии, относилась к чувствительности глаза и ее изменяемости в зависимости от разных обстоятельств, физически измеримых. Поэтому прежде всего возникает вопрос о технике самих измерений, о степени их точности, о неизменности принятой единицы, о независимости результатов измерений от личности самого наблюдателя.

Физика и точнейшая из наблюдательных наук — астрономия — учат, как надо здесь поступать и как по самим результатам измерений судить о степени их точности.

После того как измерения произведены и числа получены, то дело математики их обработать, т. е. сопоставить как между собою, так и с числами, относящимися к другому явлению, связь которого с первым ищется.

Это делается или на основании какой-либо теории или гипотезы, получающей от этой обработки свое подтверждение или опровержение, или же совершенно независимо от всяких теорий или гипотез.



Простейший случай такой обработки тот, когда сопоставляются два каких-либо объекта, каждый из которых выражен каким-либо рядом чисел, между которыми имеет место какое-либо соответствие. Здесь имеются три способа обработки:

а) Графический, состоящий, как известно, в том, что один ряд чисел принимают за частные значения переменной независимой, другой — за соответствующие первым значения функции, — одним словом, когда строится кривая, представляющая зависимость между сказанными переменными. Этот способ обыкновенно применяется, когда есть основание предполагать, что та кривая, которая строится, «согласная», т. е. не только не имеет скачков в своих ординатах или сломов в касательных, но имеет непрерывно изменяющуюся кривизну. Первые два обстоятельства замечаются легко, но для последнего нужна практика и привычки в этом деле, которые, например, образуются у всякого старого корабельного инженера.

Сюда же относится графическое «сглаживание» кривой и устранение случайных погрешностей наблюдений.

б) Второй способ — это так называемая интерполяция, над методами которой так много поработали Чебышев, Марков и С. Н. Бернштейн, обобщивший и значительно усовершенствовавший методы Чебышева и Маркова. Приемами интерполяции устанавливается между двумя рядами чисел, полученными из наблюдений, соответствие или зависимость, выражаемая функциями заданного вида, и раз эти функции избраны, то все дальнейшее производится по вполне определенным правилам, так что результат совершенно не зависит от исполнителя работы.

в) Наконец, третий род обработки — это составление дифференциального уравнения

между величиной, принимаемой за функцию, и переменной или переменными независимыми.

Здесь надо предварительно обладать теорией явления или составить таковую на основании какой-либо гипотезы, чтобы на основании их составить дифференциальное уравнение, которому явление подчинено. Это уравнение надо затем решить точно или приближенно и сопоставить решение с результатами наблюдений и показать, в какой мере теоретические результаты сходятся с наблюденными; так поступают, например, в небесной механике.

Насколько я заметил по докладам Петра Петровича, он по большей части следует этому последнему пути, кладя в основу созданную им ионную теорию возбуждения.

Здесь надо различать самый метод исследования от изложения и опубликования его результатов. Возьмем для примера трех великих, — можно сказать, гениальных — математиков: Гаусса, Эйлера и Коши.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже