Читаем Мозг. Как он устроен и что с ним делать полностью

И так постепенно, участок за участком, по мембране (в том числе и по длинному отростку) происходит смена заряда. Предыдущий кусочек мембраны как бы подначивает следующий участок менять заряд (как в цепной реакции). Таким образом, потенциал действия – это физиологическая основа нервного импульса.

Конечно, это очень упрощенная схема, потому что в процессе передачи импульса (возникновения потенциала действия) могут принимать участие и другие молекулярные системы.

Но в действительности, несмотря на понимание описанных выше биофизических и химических механизмов, у науки пока нет хорошо работающей модели мозга. Нужна такая модель, которая бы подробно отражала все аспекты его деятельности.

Фармакологи, медики и физиологи XX века активно искали вещества, с помощью которых можно было бы воздействовать на наше поведение. Наряду с открытием первых нейромедиаторов шел поиск препаратов, способных воздействовать на них. Так постепенно зарождалась нейрохимическая парадигма работы мозга.


Принцип воздействия нейромедиаторов на разные рецепторы

Как мы уже выяснили ранее, нейромедиаторы связываются со специфическими белковыми комплексами – рецепторами, после чего проводится нервный импульс. Причем узнавание происходит по принципу «ключ к замку», то есть лишь специфическая молекула конкретного нейромедиатора подходит определенному рецептору. Чтобы дальше понимать, как действуют нейромедиаторы, а также различные препараты, нужно всего лишь уяснить базовые принципы работы рецепторов на поверхности клеток мозга.

Существует два основных типа рецепторов. Первый тип имеет прямую связь с порами (ионными каналами) для заряженных частиц. Такой рецептор называется ионотропным. Как только медиатор связался с ним, пора открывается и частицы устремляются внутрь клетки (рис. 29).

Другой тип рецепторов называют метаботропным. Та-кие рецепторы не связаны напрямую с ионным каналом, но соединены с системой биологически активных молекул. Когда нейромедиатор связывается с таким рецептором, в клетке изменяется метаболизм.

Метаботропный рецептор, связавшись с нейромедиатором, посылает сигнал целой системе физиологически активных молекул внутри клетки. Например, это могут быть G-белки. А они уже проводят сигнал дальше, после чего происходит либо открытие, либо закрытие ионных каналов. Не нужно сейчас пытаться все это запомнить. Постарайтесь просто понять принцип действия: рецептор как бы активирует сигнальную систему, принимающую решение о том, что делать с порами (ионными каналами) клетки (рис. 30).

Обратите внимание, что обычно сигнальные системы состоят из множества молекул (они называются молекулами-посредниками). Возникает закономерный вопрос: а почему бы бабуле-природе не сделать все каналы ионотропными, чтобы не заморачиваться со всякими молекулами-посредниками?


Рис. 29. Ионотропный рецептор


Предполагают, что дело тут в усилении сигнала. Одна молекула нейромедиатора, задействовав один рецептор, приводит к активации многих других молекул. Если рецепторов несколько, может быть открыто сразу множество каналов. Метаботропные рецепторы влияют на активность всей клетки, в то время как ионотропные – оказывают лишь локальное воздействие на небольшой по площади участок мембраны клетки вокруг самого рецептора. Более того, метаботропные рецепторы работают медленнее, но и эффект длится дольше.


Тормозные и возбуждающие нейромедиаторы

Стоит отметить, что физиологически нейромедиаторы бывают тормозными и возбуждающими. Из названий понятно, что одни активируют (запускают) работу систем мозга, другие, напротив, тормозят.

Если нейромедиатор связывается с рецептором и увеличивается поступление ионов Na+ и Ca2+ внутрь клетки, что приводит к возникновению потенциала действия и проведения нервного импульса, он называется возбуждающим.


Рис. 30. Метаботропный рецептор. Изображена система молекул, которые активируются в ответ на присоединение нейромедиатора к рецептору


Если же при связывании нейромедиатора с рецептором наблюдается поступление ионов хлора (Cl-) внутрь клетки и выход ионов калия (К+) из нее, что приводит к снижению ее возбудимости, речь идет о тормозном процессе. По сути, механизм торможения или возбуждения сводится к связыванию нейромедиаторов с рецепторами и последующему открытию пор (ионных каналов) для тех или иных заряженных частиц. Как ни крути – далеко от нейромедиаторов уйти не получается.

Сами нейромедиаторы были открыты весьма любопытным образом.

В 20-е годы прошлого века биохимик Отто Леви проводил эксперименты, в ходе которых стимулировал блуждающий нерв лягушки. Это приводило к тому, что частота сокращений сердца животного замедлялась. Ученый собирал жидкость вокруг замедлившегося сердца лягушки и наносил на сердце другого животного. И оно тоже начинало замедляться! Это выглядело как настоящая фантастика.

Перейти на страницу:

Все книги серии Библиотека Гутенберга

Безумие ли?
Безумие ли?

Основная цель книги – борьба со страхом и предубеждением к больным с психическими расстройствами. С одной стороны болезни психики, «безумие» рождают необычный и противоречивый интерес, с другой – «сумасшествие» является настолько пугающим, что в общественном сознании рождается желание закрыться, удалить психически больных из жизни общества. С третьей стороны, некоторое невежество, рожденное страхом, приводит к определенным спекуляциям в этой области. Зачастую родственники больных обращаются к неврологам, психологам, а то и вовсе к экстрасенсам и шаманам, а к психиатру боятся идти. Но вовремя не оказанная помощь может привести к более худшим последствиям, чем необходимость числиться на учете. Данная книга поможет взглянуть на все эти проблемы и будет способствовать уменьшению стигматизации и предубеждений перед психическими расстройствами и психиатрией.

Александр Станиславович Граница

Медицина

Похожие книги

Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука
Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали
Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали

Обладатель ученой степени в области теоретической химической физики, старший научный сотрудник исследовательской группы по разработке новых лекарств Скотт Бембенек в лучших традициях популярной литературы рассказывает, как рождались и развивались научные теории. Эта книга — уникальное сочетание науки, истории и биографии. Она доступным языком рассказывает историю науки от самых ранних научных вопросов в истории человечества, не жертвуя точностью и корректностью фактов. Читатель увидит: — как энергия, энтропия, атомы и квантовая механика, составляющие основу нашей Вселенной, управляют миром, в котором мы живем; — какой трудный путь прошло человечество, чтобы открыть законы физических явлений; — как научные открытия (и связанные с ними ученые) сформировали мир, каким мы его знаем сегодня.

Скотт Бембенек

Научная литература
История Византийских императоров. От Константина Великого до Анастасия I
История Византийских императоров. От Константина Великого до Анастасия I

÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷Пятитомное сочинение А.М. Величко «История Византийских императоров» раскрывает события царствования всех монархических династий Священной Римской (Византийской) империи — от св. Константина Великого до падения Константинополя в 1453 г. Это первое комплексное исследование, в котором исторические события из политической жизни Византийского государства изображаются в их органической взаимосвязи с жизнью древней Церкви и личностью конкретных царей. В работе детально и обстоятельно изображены интереснейшие перипетии истории Византийской державы, в том числе в части межцерковных отношений Рима и Константинополя. Приводятся многочисленные события времён Вселенских Соборов, раскрываются роль и формы участия императоров в деятельности Кафолической Церкви. Сочинение снабжено портретами всех императоров Византийской империи, картами и широким справочным материалом.Для всех интересующихся историей Византии, Церкви, права и политики, а также студентов юридических и исторических факультетов.Настоящий том охватывает эпоху от Константина Великого до Анастасия I.÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷

Алексей Михайлович Величко

Научная литература