Я ПРИВОДИЛ доводы, что синестезия, в частности «верхние» формы синестезии (включая абстрактные понятия, а не конкретные сенсорные свойства), может дать ключ к пониманию некоторых высших форм мыслительного процесса, на который способны только люди. Можем ли мы применить эти идеи к тому, что, возможно, является одной из наших высших интеллектуальных способностей математике? Математики часто говорят о числах, которые они видят в пространстве, путешествуя по этой абстрактной сфере, чтобы выявить скрытые связи, которые другие, возможно, пропустили. Например, последняя теорема Ферма или гипотеза Гольдбаха. Числа и космос? Являются ли они метафорическими?
Однажды, в 1997 году, я пропустил стаканчик шерри и меня озарило, ну или я решил, что меня озарило. (Большинство «озарений», которые у меня были в подвыпившем состоянии, оказывались ложной тревогой.) В своём научном труде Гальтон описывает второй вид синестезии, который является ещё более интригующим, чем явление «число — цвет». Он назвал его «числовые формы». Другие исследователи называют его «числовая прямая». Если бы я попросил вас представить числа от 1 до 10 в вашем воображении, возможно, вы почувствуете смутное стремление увидеть их расположенными в пространстве последовательно, слева направо, как вас учили в начальной школе. У синестетов числовые ряды бывают разными. Они способны представить числа чётко и видят их не последовательно слева направо, а на извилистой линии, так что 36 может оказаться ближе к 23, чем, скажем, к 28 (рис. 3.8). Можно было бы считать это «пространственно — числовой» синестезией, в которой каждое число располагается всегда на своём определённом месте в пространстве. Расположение чисел для каждого человека остаётся неизменным, даже, как было проверено, если прошло несколько месяцев.
Как и всегда в психологии, нужен был метод, чтобы экспериментально доказать наблюдения Гальтона. Я обратился к своим студентам Эдду Хаббарду и Шаи Азулэй за помощью. Сперва мы решили пронаблюдать хорошо известный эффект «чисел на расстоянии», наблюдаемый у обычных людей. (Когнитивные психологи изучили все возможные вариации данного эффекта на несчастных студентах — волонтёрах, но его отношение к пространственно — числовой синестезии не было обнаружено, пока мы не присоединились.) Спросите кого угодно, какое из двух чисел больше, 5 или 7? 12 или 50? Любой, кто учился в школе, даст вам правильный ответ. Самое интересное наступает, когда вы засекаете время, которое занимает ответ. Эта задержка между показом пары чисел и словесным ответом является временем реакции. Оказывается, чем больше разница чисел, тем короче время реакции, и наоборот, чем ближе расположены два числа, тем больше времени требуется на ответ. Это наводит на мысль, что в мозге числа представлены в виде своего рода внутреннего числового ряда, с которым вы «зрительно» консультируетесь, чтобы определить, какая величина больше. Числа, которые отстоят друг от друга дальше, могут быть легче выхвачены глазом, в то время как числа, которые расположены ближе друг к другу, требуют более внимательного рассмотрения, которое занимает несколько миллисекунд.
Мы поняли, что могли бы использовать это, чтобы убедиться, действительно ли существует феномен извилистой числовой линии. Мы могли бы попросить пространственно — числового синестета сравнить пары чисел и проследить, совпадает время реакции с реальной математической дистанцией между числами или будет отражать уникальную геометрию внутренней числовой линии синестета. В 2001 году нам удалось привлечь к сотрудничеству австрийскую студентку по имени Петра, которая была пространственно — числовым синестетом. Её чрезвычайно извилистая линия чисел была так загнута, что, например, число 21 было пространственно ближе к 36, чем к 18. Эд и я были очень взволнованы. С тех пор как Гальтон открыл пространственно — числовой феномен в 1867 году, никто его не исследовал. Так что любая новая информация будет очень ценной. Наконец- то дело сдвинется с мёртвой точки.
Мы подключили Петру к аппарату, который измерял время её реакции на вопросы: какое число больше 36 или 38? 36 или 23? и т. п. Как часто бывает в науке, результат не был определённо ясным. Казалось, что время реакции Петры зависит частично от числового расстояния, а частично от пространственного. Результат был не таким убедительным, на какой мы надеялись, но это дало возможность предположить, что её числовая линия не была представлена слева направо и линейно, как в обычном мозге. Некоторые числовые образы в её мозге были определённо спутаны.
Мы опубликовали наше открытие в 2003 году, в томе, посвящённом синестезии, и это поспособствовало многим дальнейшим исследованиям. Результаты были разнородными, но наконец‑то мы возродили интерес к давней проблеме, которая была полностью проигнорирована учёными, и мы искали пути объективных исследований.