Читаем Мозговой трест. 39 ведущих нейробиологов – о том, что мы знаем и чего не знаем о мозге полностью

С этой задачей мозг по большей части справляется самостоятельно — он сам себя «выстраивает»[29]. Многим людям мозг представляется вычислительной машиной, которая запрограммирована на осмысление входящей информации и выработку соответствующих действий. Но сравнение с компьютером не учитывает, что мозг не вынимают из коробки уже готовым к работе

[30]. Для формирования мозга требуются годы, причем немалая часть «строительных работ» выполняется спустя значительное время после рождения. Этот процесс сопровождается грандиозными изменениями. Мозг новорожденного младенца весит приблизительно полкилограмма, и синаптических связей в нем в три раза меньше, чем в мозге взрослого человека. Более того, в течение первого года жизни эти связи, как правило, исчезают и заменяются новыми. Эти по большей части временные связи изначально не предназначены для выполнения задач, с которыми должен справляться двухлетний ребенок, не говоря уже о взрослом.

Жизненный опыт направляет развитие мозга, но лишь косвенным образом. Информация из окружающего мира поступает в мозг в виде электрических импульсов, которые передаются 15 миллионами аксонов, тонких отростков нервных клеток, транслирующих сигналы на большие расстояния[31]

. Например, вся зрительная информация проходит примерно по 2 миллионам аксонов, соединяющих сетчатку глаз с мозгом. Сигналы от тела, сообщающие, например, о голоде, удовольствии или хорошем самочувствии, поступают всего по 70 тысячам аксонов блуждающего нерва. И так далее. Этот поток информации, не прекращающийся ни на мгновение, передается и обрабатывается десятками миллиардов нейронов мозга, которые сообщаются преимущественно друг с другом. По сути, большую часть усилий мозг тратит на разговор с самим собой, а внешний мир влияет на этот разговор лишь опосредованно.

Но это не значит, что мозг — чистый лист. Общая структура и схема связей в нем определяются генетическими программами, которые начинают работать с самого начала жизни, и эти же генетические программы задают принципы, по которым растут и изменяются нейроны и синаптические связи. Влияние опыта на развитие мозга также подчиняется этим принципам. В процессе развития каждая область мозга обладает хорошо структурированным набором связей с другими областями и, передавая информацию по этим каналам, способствует созреванию других областей.

Жизненный опыт оказывает наиболее сильное влияние на развитие мозга, если совпадает с окном возможностей, которое называется сензитивным периодом. У кошек сензитивный период для развития зрения приходится на первые три или четыре месяца жизни, а у людей — на первые 5–10 лет, из которых особенно важен первый год. Торстен Визель и Дэвид Хьюбел открыли этот принцип в серии экспериментов на котятах. Они выяснили, что, если в мозг не поступают сигналы из одного или обоих глаз, это приводит к серьезным нарушениям координации зрения между двумя глазами, а такая координация необходима для формирования целостного визуального восприятия[32]

. Если визуальные сигналы не поступают в мозг достаточно долго, нарушения в зрительных зонах становятся необратимыми. Например, когда в сензитивный период котенку зашивали веко, чтобы визуальная информация поступала только в один глаз, то зрительная кора не развивалась должным образом; в ней отсутствовали нейроны, которые обрабатывали бы информацию от обоих глаз. Без этих нейронов у котят не формировалось нормальное зрение (см. рис. 3).

РИС. 3. Поток информации от видимого мира к зрительной коре и его нарушение путем зашивания века в классических экспериментах Визеля и Хьюбела


Зрительная информация от сетчатки поступает на первую «станцию обработки данных» в мозге, которая называется таламус. Эта область извлекает полезные фрагменты и передает их в кору головного мозга, подобно тому как птица-мать разжевывает пищу, прежде чем дать ее голодному птенцу. Таким образом, благодаря стадии «разжевывания» остальные области мозга получают необходимую информацию для правильного развития. Работа Визеля и Хьюбела, которая принесла им Нобелевскую премию, отчасти заключалась в выяснении того, какую роль в развитии мозга играет предварительная обработка информации таламусом. Они обнаружили, что для первоначальной прокладки пути от сетчатки к таламусу подходит любая активность нейронов сетчатки, даже от рассеянного света. Но для улучшения связи таламуса со зрительной корой мозга требуется нечто большее: специфические типы активности, вызываемые визуальными образами. В конечном счете способность различать цвета, формы и движение требует развития зрительной коры, которое зависит от потока данных, проходящего через таламус. После того как таламус выполняет свою «обучающую» задачу, он продолжает передавать информацию — но уже не недоразвитой области, а сложной системе мозга, отвечающей за зрение.

Перейти на страницу:

Похожие книги

Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение
Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение

Инстинкт говорит нам, что наш мир трёхмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Митио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признаётся многими авторитетными учёными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести учёных к так называемой теории всего. Однако серьёзной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Митио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Происхождение эволюции. Идея естественного отбора до и после Дарвина
Происхождение эволюции. Идея естественного отбора до и после Дарвина

Теория эволюции путем естественного отбора вовсе не возникла из ничего и сразу в окончательном виде в голове у Чарльза Дарвина. Идея эволюции в разных своих версиях высказывалась начиная с Античности, и даже процесс естественного отбора, ключевой вклад Дарвина в объяснение происхождения видов, был смутно угадан несколькими предшественниками и современниками великого британца. Один же из этих современников, Альфред Рассел Уоллес, увидел его ничуть не менее ясно, чем сам Дарвин. С тех пор работа над пониманием механизмов эволюции тоже не останавливалась ни на минуту — об этом позаботились многие поколения генетиков и молекулярных биологов.Но яблоки не перестали падать с деревьев, когда Эйнштейн усовершенствовал теорию Ньютона, а живые существа не перестанут эволюционировать, когда кто-то усовершенствует теорию Дарвина (что — внимание, спойлер! — уже произошло). Таким образом, эта книга на самом деле посвящена не происхождению эволюции, но истории наших представлений об эволюции, однако подобное название книги не было бы настолько броским.Ничто из этого ни в коей мере не умаляет заслуги самого Дарвина в объяснении того, как эволюция воздействует на отдельные особи и целые виды. Впервые ознакомившись с этой теорией, сам «бульдог Дарвина» Томас Генри Гексли воскликнул: «Насколько же глупо было не додуматься до этого!» Но задним умом крепок каждый, а стать первым, кто четко сформулирует лежащую, казалось бы, на поверхности мысль, — очень непростая задача. Другое достижение Дарвина состоит в том, что он, в отличие от того же Уоллеса, сумел представить теорию эволюции в виде, доступном для понимания простым смертным. Он, несомненно, заслуживает своей славы первооткрывателя эволюции путем естественного отбора, но мы надеемся, что, прочитав эту книгу, вы согласитесь, что его вклад лишь звено длинной цепи, уходящей одним концом в седую древность и продолжающей коваться и в наше время.Само научное понимание эволюции продолжает эволюционировать по мере того, как мы вступаем в третье десятилетие XXI в. Дарвин и Уоллес были правы относительно роли естественного отбора, но гибкость, связанная с эпигенетическим регулированием экспрессии генов, дает сложным организмам своего рода пространство для маневра на случай катастрофы.

Джон Гриббин , Мэри Гриббин

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука