Читаем Начала современного естествознания: концепции и принципы полностью

Сейчас часто предлагается и совершенно другое объяснение «эффективности» математики. Оно восходит к великому немецкому философу и космологу Иммануилу Канту. Кант утверждал, что мы не знаем и не можем знать природу. Мы ограничены чувственными восприятиями, но наш разум, наделенный предустановленными структурами пространства и времени, организует эти чувственные восприятия в соответствии с тем, что диктуют присущие ему врожденные структуры. Например, наши пространственные восприятия мы организуем в соответствии с законами евклидовой геометрии потому, что этого требует наш разум. Будучи организованными таким образом, пространственные восприятия и в дальнейшем подчиняются законам евклидовой геометрии.

Великий французский математик, физик и философ Анри Пуанкаре (1854–1912) предложил еще одно объяснение, в значительной мере выдержанное в духе Канта, хотя уже давно взгляды Пуанкаре получили название «конвенционализм» (соглашение). Пуанкаре утверждал следующее: «Опыт играет необходимую роль в происхождении геометрии; но было бы ошибкой заключить, что геометрия — хотя бы отчасти — является экспериментальной наукой. Если бы она была экспериментальной наукой, она имела бы только временное, приближенное — весьма грубо приближенное — значение. Она была бы только наукой о движении твердых тел. Но на самом деле она не занимается реальными твердыми телами; она имеет своим предметом некие идеальные тела, абсолютно неизменные, которые являются только упрощенным и очень отдаленным отображением реальных тел».

Эйнштейн и Инфельд в «Эволюции физики» также, по существу, приняли точку зрения Канта: «Физические понятия суть свободные творения человеческого разума, а не определены, однозначно внешним миром, как это иногда может показаться. В нашем стремлении понять реальность мы отчасти подобны человеку, который хочет понять механизм закрытых часов. Он видит циферблат и движущиеся стрелки, даже слышит тиканье, но он не имеет средств открыть их».

В своей книге «Философия математики и естественных наук» выдающийся немецкий математик и философ науки XX века Герман Вейль высказал следующее мнение: «В природе существует внутренне присущая ей скрытая гармония, отражающаяся в наших умах в виде простых математических законов. Именно этим объясняется, почему природные явления удается предсказывать с помощью комбинации наблюдений и математического анализа». Вейль открыто выступает за то, чтобы рассматривать математику как одну из естественных наук. Математические теоремы, подобно физическим утверждениям, могут быть формально проверяемыми гипотезами.

Выдающаяся группа французских математиков, работавших в XX веке под коллективным псевдонимом Никола Бурбаки, утверждала, что между экспериментальными явлениями и математическими структурами существует близкая взаимосвязь. Однако абсолютно неизвестно, какими причинами обусловлена эта взаимосвязь, и вряд ли мы когда-нибудь узнаем. В далеком прошлом математические закономерности выводили из твердо установленных экспериментальных истин, в частности, непосредственно из интуитивного восприятия пространства. Однако квантовая физика показала, что эта макроскопическая интуиция реальности охватывает и микроскопические явления совершенно иной природы, связывая их с математикой, которая заведомо была создана не как приложение к экспериментальной науке. Математику можно представлять как своего рода хранилище математических структур. Некоторые аспекты физической или эмпирической реальности удивительно точно соответствуют этим структурам.

Роль математики в современной физике несравненно шире, чем просто роль удобного инструмента исследования. Новая и новейшая физика — наука не столько механическая, точнее, вовсе не механическая, сколько математическая (например, теория струн, одна из теорий в физике элементарных частиц или физики высоких энергий).

В своей повседневной работе физики используют математику для получения результатов, вытекающих из законов природы, для проверки применимости условных утверждений этих законов к наиболее часто встречающимся или интересующим их конкретным обстоятельствам. Чтобы это было возможным, законы природы должны формироваться на математическом языке.

Разумеется, для формулировки законов природы физики отбирают лишь некоторые математические понятия, используя, таким образом, лишь небольшую долю всех имеющихся в математике понятий.

Так мы приходим к бесспорному и неопровержимому выводу: математика и физическая реальность нераздельны. Математика — поскольку она говорит нам о составляющих физического мира и поскольку наше знание этого мира может быть выражено только в математических понятиях — так же же реальна, как столы и стулья, бумага, на которой мы пишем, ручка и т. д. и т. п..

Резюме

Перейти на страницу:

Все книги серии Высшее образование

Деловая переписка: учебное пособие
Деловая переписка: учебное пособие

Деловое письмо среди документов, создаваемых в сфере управления, занимает одно из ведущих мест. Многим управленцам ежедневно приходится составлять большое количество писем. В пособии рассмотрены правила оформления делового письма в России согласно ГОСТ Р 6.30-2003, типовой инструкции по делопроизводству в федеральных органах исполнительной власти, утвержденной приказом Росархива от 27.11.2000 № 68 и зарегистрированной в Минюсте РФ от 26.12.2000 № 2508, и правила оформления международного письма, которые выработаны национальными службами стандартизации в рамках ИСО. Особое внимание уделяется тексту письма, приводятся примеры составления писем в органы государственной власти и различные организации.Предназначено для студентов, изучающих делопроизводство и менеджмент, а также для практических работников управления.

Мария Владимировна Кирсанова , Наталья Николаевна Анодина , Юрий Михайлович Аксенов

Экономика / Делопроизводство / Управление, подбор персонала / Финансы и бизнес

Похожие книги

Афоризмы житейской мудрости
Афоризмы житейской мудрости

Немецкий философ Артур Шопенгауэр – мизантроп, один из самых известных мыслителей иррационализма; денди, увлекался мистикой, идеями Востока, философией своего соотечественника и предшественника Иммануила Канта; восхищался древними стоиками и критиковал всех своих современников; называл существующий мир «наихудшим из возможных миров», за что получил прозвище «философа пессимизма».«Понятие житейской мудрости означает здесь искусство провести свою жизнь возможно приятнее и счастливее: это будет, следовательно, наставление в счастливом существовании. Возникает вопрос, соответствует ли человеческая жизнь понятию о таком существовании; моя философия, как известно, отвечает на этот вопрос отрицательно, следовательно, приводимые здесь рассуждения основаны до известной степени на компромиссе. Я могу припомнить только одно сочинение, написанное с подобной же целью, как предлагаемые афоризмы, а именно поучительную книгу Кардано «О пользе, какую можно извлечь из несчастий». Впрочем, мудрецы всех времен постоянно говорили одно и то же, а глупцы, всегда составлявшие большинство, постоянно одно и то же делали – как раз противоположное; так будет продолжаться и впредь…»(А. Шопенгауэр)

Артур Шопенгауэр

Философия
2. Субъективная диалектика.
2. Субъективная диалектика.

МатериалистическаяДИАЛЕКТИКАв пяти томахПод общей редакцией Ф. В. Константинова, В. Г. МараховаЧлены редколлегии:Ф. Ф. Вяккерев, В. Г. Иванов, М. Я. Корнеев, В. П. Петленко, Н. В. Пилипенко, А. И. Попов, В. П. Рожин, А. А. Федосеев, Б. А. Чагин, В. В. ШелягСубъективная диалектикатом 2Ответственный редактор тома В. Г. ИвановРедакторы:Б. В. Ахлибининский, Ф. Ф. Вяккерев, В. Г. Марахов, В. П. РожинМОСКВА «МЫСЛЬ» 1982РЕДАКЦИИ ФИЛОСОФСКОЙ ЛИТЕРАТУРЫКнига написана авторским коллективом:введение — Ф. Ф. Вяккеревым, В. Г. Мараховым, В. Г. Ивановым; глава I: § 1—Б. В. Ахлибининским, В. А. Гречановой; § 2 — Б. В. Ахлибининским, А. Н. Арлычевым; § 3 — Б. В. Ахлибининским, А. Н. Арлычевым, В. Г. Ивановым; глава II: § 1 — И. Д. Андреевым, В. Г. Ивановым; § 2 — Ф. Ф. Вяккеревым, Ю. П. Вединым; § 3 — Б. В. Ахлибининским, Ф. Ф. Вяккеревым, Г. А. Подкорытовым; § 4 — В. Г. Ивановым, М. А. Парнюком; глава Ш: преамбула — Б. В. Ахлибининским, М. Н. Андрющенко; § 1 — Ю. П. Вединым; § 2—Ю. М. Шилковым, В. В. Лапицким, Б. В. Ахлибининским; § 3 — А. В. Славиным; § 4—Г. А. Подкорытовым; глава IV: § 1 — Г. А. Подкорытовым; § 2 — В. П. Петленко; § 3 — И. Д. Андреевым; § 4 — Г. И. Шеменевым; глава V — M. Л. Лезгиной; глава VI: § 1 — С. Г. Шляхтенко, В. И. Корюкиным; § 2 — М. М. Прохоровым; глава VII: преамбула — Г. И. Шеменевым; § 1, 2 — М. Л. Лезгиной; § 3 — М. Л. Лезгиной, С. Г. Шляхтенко.

Валентина Алексеевна Гречанова , Виктор Порфирьевич Петленко , Владимир Георгиевич Иванов , Сергей Григорьевич Шляхтенко , Фёдор Фёдорович Вяккерев

Философия