Читаем Начало бесконечности. Объяснения, которые меняют мир полностью

К счастью, этого не происходит. Напомню, что на достаточно детальном уровне то, что нам в первом приближении видится как один вариант истории для зеркала, пассивно пребывающего или слегка вибрирующего на опоре, на самом деле представляет собой огромное число историй, в которых экземпляры всех атомов постоянно расщепляются и воссоединяются. В частности, совокупная энергия зеркала принимает огромное число возможных значений в окрестности среднего, «классического». Но что же происходит, когда фотон ударяет по зеркалу, изменяя эту суммарную энергию на один квант?

На минуту упростив ситуацию до предела, представим себе всего пять из бесконечного числа экземпляров зеркала, причем у каждого из них своя энергия колебаний со значением в диапазоне от двух квантов ниже до двух квантов выше среднего. Каждый экземпляр фотона попадает на один экземпляр зеркала и сообщает ему один дополнительный квант энергии. Таким образом, после этого удара средняя энергия экземпляров зеркала увеличится на один квант, и теперь это будут экземпляры со значениями энергии от одного кванта ниже до трех квантов выше старого среднего. Но поскольку на этом уровне детализации не существует автономных историй, связанных с любым из этих значений энергии, не имеет смысла спрашивать, является ли экземпляр зеркала с конкретным значением энергии после удара тем же

, что и тот, у которого раньше была такая энергия. Объективным является только тот физический факт, что из пяти экземпляров зеркала у четырех значения энергии те же, что были раньше, а у одного – нет. Значит, только он – тот, у которого энергия на три кванта выше, чем предыдущее среднее, – несет запись о столкновении с фотоном. А это означает, что только в одной пятой вселенных, в которых фотон ударился о зеркало, волна дифференциации дошла до зеркала, и только в них будет подавлена последующая интерференция между экземплярами этого фотона, которые столкнулись или не столкнулись с зеркалом.

В реальных цифрах это ближе к одному случаю из триллиона триллионов, а значит, вероятность подавления интерференции равна всего лишь одному из триллиона триллионов. Это значительно ниже, чем вероятность того, что эксперимент даст неточные результаты из-за неидеальных измерительных приборов или что он сорвется из-за удара молнии.

Теперь рассмотрим получение этого одного кванта энергии, чтобы понять, как такое дискретное изменение может случиться без всякого нарушения непрерывности. Рассмотрим простейший из возможных случаев: атом поглощает фотон вместе со всей его энергией. Эта передача энергии не является мгновенной. (Забудьте все, что читали о «квантовых скачках», – это все выдумки.) Есть много способов, как это может произойти, но самый простой из них следующий. В начале процесса атом находится (скажем) в своем «основном состоянии», в котором у его электронов наименьшая возможная энергия, допускаемая квантовой теорией. Это означает, что все его экземпляры (в рамках соответствующей крупнозернистой истории) обладают такой энергией. Допустим также, что они неотличимы. В конце процесса все экземпляры остаются неотличимыми, но теперь они находятся в «возбужденном состоянии» с одним дополнительным квантом энергии. Что представляет собой атом в середине процесса? Его экземпляры все еще остаются неотличимыми

, но половина из них находится в основном, а половина – в возбужденном состоянии. Это как если бы непрерывно изменяемое количество денег постепенно переходило от одного дискретного владельца к другому.

Такой механизм постоянно встречается в квантовой физике и в общем случае за счет него переходы между дискретными состояниями осуществляются непрерывным образом. В классической физике «крохотный эффект» всегда означает очень малое изменение каких-либо измеримых величин. А в квантовой – физические переменные обычно дискретны и не могут претерпевать очень мало изменений. Поэтому тут «крохотный эффект» означает небольшое изменение в пропорциях различных дискретных свойств.

На фоне этого встает также вопрос, является ли само время непрерывной величиной. В рамках данного обсуждения я полагаю, что является. Однако квантовая механика времени еще до конца не понята и не будет понята, пока не появится квантовая теория гравитации (объединение квантовой теории с общей теорией относительности); и может оказаться, что все не так просто. Но в чем мы можем быть вполне уверены, так это в том, что в этой теории разные времена – это частный случай разных вселенных. Другими словами, время – явление, связанное с запутанностью, которое помещает все одинаковые показания часов (правильно подготовленных часов или любых объектов, которые можно использовать как часы) в одну и ту же историю. Первыми это поняли в 1983 году физики Дон Пейдж и Уильям Вутерс.

Перейти на страницу:

Похожие книги

Русская литература Урала. Проблемы геопоэтики
Русская литература Урала. Проблемы геопоэтики

Учебное пособие предназначено для студентов, обучающихся по направлению «Филология» и изучающих проблемы региональной уральской литературы и культуры в рамках учебной дисциплины «Региональная литература и культура» общепрофессионального цикла. В учебном пособии литература рассматривается в ее взаимодействии с географическим пространством. Соответственно рассматриваются история формирования и механизмы локальных текстов – уральского и пермского, изучается роль геопоэтических образов в становлении территориальной идентичности, проблемы прагматики литературного текста. В пособии анализируется проза Д.Н. Мамина-Сибиряка, А.В. Иванова, путевые заметки П.И. Мельникова-Печерского, П.А. Небольсина и А.И. Герцена, творчество современных пермских поэтов. Учебное пособие подготовлено в рамках гранта РГНФ № 12-14-59006. «Идеология и символика региональной идентичности в художественном творчестве и гуманитарной практике Алексея Иванова».

Владимир Васильевич Абашев

Культурология / Учебники и пособия для среднего и специального образования / Педагогика / Языкознание / Образование и наука