Читаем Нанонауки полностью

Именно транзисторы стали основой всей электроники. Из них собирали схемы, выполнявшие логические операции и запоминавшие информацию. Поначалу это была работа кропотливая, ручная, наподобие вышивания, часто производимая под микроскопом, с помощью паяльника, и все равно, сколько же случалось ошибок! Первым делом нужно было изготовить достаточно много транзисторов, затем вставить каждый в корпус, и потом уже подключать их к другим электронным деталям, соединяя элементы проводниками. Но в 1958 году появилась новинка, избавлявшая от многих операций, производимых вручную: инженер Texas Instruments Джак Килби изобрел интегральную схему (сейчас мы называем это устройство микросхемой, или чипом). Определение «интегральная» означало, что множество электронных компонентов (транзисторы, резисторы, диоды и т. п.) вместе с соединительными проводниками размещались на поверхности одного полупроводникового кристалла — так называемой подложки. Очень скоро другие инженеры догадались, что транзисторы можно располагать вертикально, устанавливая их друг на друге, — у Килби все компоненты были плоскостными и из одного и того же материала (кристаллического полупроводника). На крошечных — разных! — германиевых пластинках Килби сначала создавал транзистор, потом формировал три резистора и конденсатор, а затем соединял получившиеся детали тоненькими золотыми проводками, припаивая их вручную. Прошло несколько месяцев, и Роберт Нойс из компании

Fairchild Semiconductors сумел сформировать все компоненты на поверхности одной-единственной кремниевой пластинки. При этом он обошелся без соединительных проводников, сформировав и все соединения из того же кремния. Вот тогда и родилась первая «настоящая» интегральная схема. А еще через несколько месяцев началось массовое промышленное производство интегральных схем.

ГОРДОН МУР РАЗБИРАЕТСЯ С НЕРАЗБЕРИХОЙ

Чтобы производить интегральные схемы в больших количествах, нужна была технология, обеспечивавшая автоматизацию сборки электронных компонентов на подложке. Поначалу вопрос о миниатюризации даже не поднимался — всем казалось очевидным, что новинка будет внедрена незамедлительно, например в электронике, устанавливаемой на военных реактивных снарядах и ракетах. Электроника следит за устойчивостью полета, и потому такая управляющая система включает в себя гироскоп, замеряющий отклонение от курса, и систему управления подачей топлива в реактивный двигатель. Инженеры-электронщики в союзе с армией физиков извлекли немалые выгоды из космической программы «Аполлон», обеспечивающей постоянный запрос на все более миниатюрную микроэлектронику. В реактивном снаряде или ракете тесно, а каждый лишний грамм груза — это дополнительный расход топлива, поэтому соображения места и массы имеют первостепенное значение. К тому же чем мельче транзистор, тем выше его быстродействие. А если транзисторов в интегральной схеме (в том же объеме) становится больше, то и возможностей у микросхемы прибавляется. Так что плотность расположения транзисторов начиная с 1960-х годов неуклонно возрастала, подчиняясь эмпирической закономерности, замеченной в 1965 году Гордоном Муром.

Защитив диплом в Калифорнийском университете, где он какое-то время сотрудничал с одним из изобретателей транзистора Уильямом Шокли, Гордон Мур вскоре начал работать в фирме Fairchild Semiconductors. В апреле 1965 года главный редактор американского журнала Electronics

попросил Мура написать статью о перспективах электроники[9]. На момент написания статьи в самых сложных интегральных схемах содержалось десятка три электронных элементов, в том числе несколько транзисторов. Не так уж много, но Гордон Мур верил в эту технологию. Приглядевшись к темпам ее развития, он заметил: после изобретения интегральной схемы число компонентов за год выросло с четырех до восьми, а еще через год — до 16. Получалось, что примерно за год количество компонентов удваивается. Вовсе не думая об открытии или тем более навязывании какого-то закона собственного имени, Мур просто высказал надежду на появление все более миниатюрных электронных схем и тех деталей, из которых они строятся, предсказывая, что при этом схемы будут усложняться и дешеветь.

Перейти на страницу:

Все книги серии Galileo

Похожие книги

Метафизика
Метафизика

Аристотель (384–322 до н. э.) – один из величайших мыслителей Античности, ученик Платона и воспитатель Александра Македонского, основатель школы перипатетиков, основоположник формальной логики, ученый-естествоиспытатель, оказавший значительное влияние на развитие западноевропейской философии и науки.Представленная в этой книге «Метафизика» – одно из главных произведений Аристотеля. В нем великий философ впервые ввел термин «теология» – «первая философия», которая изучает «начала и причины всего сущего», подверг критике учение Платона об идеях и создал теорию общих понятий. «Метафизика» Аристотеля входит в золотой фонд мировой философской мысли, и по ней в течение многих веков учились мудрости целые поколения европейцев.

Аристотель , Аристотель , Вильгельм Вундт , Лалла Жемчужная

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Современная русская и зарубежная проза / Прочее / Античная литература / Современная проза
Физика повседневности. От мыльных пузырей до квантовых технологий
Физика повседневности. От мыльных пузырей до квантовых технологий

Почему при течении воды в реках возникают меандры? Как заставить бокал запеть? Можно ли построить переговорную трубку между Парижем и Марселем? Какие законы определяют форму капель и пузырьков? Что происходит при приготовлении жаркого? Можно ли попробовать спагетти альденте на вершине Эвереста? А выпить там хороший кофе? На все эти вопросы, как и на многие другие, читатель найдет ответы в этой книге. Каждая страница книги приглашает удивляться, хотя в ней обсуждаются физические явления, лежащие в основе нашей повседневной жизни. В ней не забыты и последние достижения физики: авторы посвящают читателя в тайны квантовой механики и сверхпроводимости, рассказывают о физических основах магнитно-резонансной томографии и о квантовых технологиях. От главы к главе читатель знакомится с неисчислимыми гранями физического мира. Отмеченные Нобелевскими премиями фундаментальные результаты следуют за описаниями, казалось бы, незначительных явлений природы, на которых тем не менее и держится все величественное здание физики.

Андрей Варламов , Аттилио Ригамонти , Жак Виллен

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Мозг: биография. Извилистый путь к пониманию того, как работает наш разум, где хранится память и формируются мысли
Мозг: биография. Извилистый путь к пониманию того, как работает наш разум, где хранится память и формируются мысли

Стремление человечества понять мозг привело к важнейшим открытиям в науке и медицине. В своей захватывающей книге популяризатор науки Мэтью Кобб рассказывает, насколько тернистым был этот путь, ведь дорога к высокотехнологичному настоящему была усеяна чудаками, которые проводили ненужные или жестокие эксперименты.Книга разделена на три части, «Прошлое», «Настоящее» и «Будущее», в которых автор рассказывает о страшных экспериментах ученых-новаторов над людьми ради стремления понять строение и функции самого таинственного органа. В первой части описан период с древних времен, когда сердце (а не мозг) считалось источником мыслей и эмоций. Во второй автор рассказывает, что сегодня практически все научные исследования и разработки контролируют частные компании, и объясняет нам, чем это опасно. В заключительной части Мэтью Кобб строит предположения, в каком направлении будут двигаться исследователи в ближайшем будущем. Ведь, несмотря на невероятные научные прорывы, мы до сих пор имеем лишь смутное представление о работе мозга.

Мэтью Кобб

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука