Читаем Нанонауки полностью

Первыми о квантовых вычислительных устройствах заговорили еще в 1980-х годах Ричард Фейнман и Дэвид Дейч из Центра квантовых вычислений Оксфордского университета. Принцип квантового калькулятора основывается на спонтанной реакции квантовой — атомной или молекулярной — системы, находящейся в некотором нестационарном состоянии; предложено использовать для вычислений самопроизвольный отклик этой системы на какой-то стимул. Система делится на маленькие маленькие вычислительные единицы — «квантовые биты». Линейка квантовых битов может быть приведена к квантовой суперпозиции двух основных состояний (0 или 1), и оба состояния будут взаимодействовать между собой, но без обмена электронами. Само вычисление сводится к предоставлению ансамблю квантовых бит возможности самопроизвольно развиваться во времени. Квантовое вычислительное устройство считает примерно так, как считает время часовой механизм на шариках или на подшипниках, катающихся вдоль реек разной длины. Такие часы отсчитывают время ничуть не хуже, чем часы на зубчатых колесиках. Сначала систему квантовых битов готовят, вводя в нее два складываемых числа. Потом система развивается во времени самотеком: состояния отдельных бит меняются, пока не установится новое стационарное состояние всей линейки бит, которое и будет искомой суммой.

Эта концепция квантового калькулятора показывает, что вычислительные устройства не обязательно строить из электронных схем. Более того, специалисты по молекулярной электронике показывали, что незачем «заставлять» молекулу уподобляться электронной схеме — молекула может считать, но совсем не так, как приборы макро- или даже микроэлектроники. Оказывается, для того, чтобы научить молекулу считать, достаточно воспользоваться квантовой динамикой, которая присуща любой молекуле. При этом квантовые молекулы-калькуляторы способны выполнять все мыслимые арифметические и логические операции и, при равной сложности, совсем не обязаны быть такими же громадными и громоздкими, как те молекулы-схемы, которые пригрезились Форресту Картеру. Ученые даже сумели показать, что для квантовых расчетов вовсе незачем дробить молекулу на квантовые биты. Управлять внутренними квантовыми состояниями молекулы можно и манипулируя ее электронной структурой. Сами эти молекулы уже синтезируются и, надо думать, скоро мы узнаем о первых экспериментах с ними. Среди прочего они избавляют нас от пресловутого закона Мура. В самом деле показано, что для увеличения вычислительной мощности не обязательно нагромождать все больше и больше транзисторов на все сильнее уменьшающейся подложке, так как есть возможность управлять развитием квантовой системы во времени, а сама эта система может становиться все сложнее и сложнее и каждое новое поколение подобных систем будет богаче возможностями, чем системы предыдущего поколения.

ЗАВОДЫ ИЗ МОЛЕКУЛ

Первые механические молекулы и первые молекулярные вычислители уже описаны. Напрашивается мысль о соединении молекул обоих типов: если поставить молекулу-калькулятор на молекулу-карету, то получится… молекулярный робот. В самом деле в нашем — макроскопическом — мире роботом называется устройство, выполняющее различные механические задачи и управляющееся вычислительной машиной, установленной в корпусе робота. Сегодня молекула-робот — лишь идея или, лучше сказать, мечта. И никто не скажет, сбудется ли когда-нибудь эта мечта. Химическому синтезу подобных нанороботов и телеуправлению таким синтезом мешают препятствия, кажущиеся пока непреодолимыми.

Но если уж синтез нанороботов столь сложен, то почему бы не попытаться его обойти? Скажем, возложив эту задачу на машины. Ну и пусть сами эти машины тоже будут молекулярными. И пусть они, перебирая атом за атомом (или присоединяя одно химическое соединение к другому), собирают из них все нужные молекулы-машины. Не очень пока понятно, какими они, эти молекулярные сборщики, будут. Ясно лишь, что речь идет о самых настоящих сборочных цехах, даже заводах по производству молекул вычислительных и механических, а также нанороботов. Понятно, конечно, что на нынешнем уровне знаний что-либо в этом роде немыслимо и неосуществимо.

Перейти на страницу:

Все книги серии Galileo

Похожие книги

Метафизика
Метафизика

Аристотель (384–322 до н. э.) – один из величайших мыслителей Античности, ученик Платона и воспитатель Александра Македонского, основатель школы перипатетиков, основоположник формальной логики, ученый-естествоиспытатель, оказавший значительное влияние на развитие западноевропейской философии и науки.Представленная в этой книге «Метафизика» – одно из главных произведений Аристотеля. В нем великий философ впервые ввел термин «теология» – «первая философия», которая изучает «начала и причины всего сущего», подверг критике учение Платона об идеях и создал теорию общих понятий. «Метафизика» Аристотеля входит в золотой фонд мировой философской мысли, и по ней в течение многих веков учились мудрости целые поколения европейцев.

Аристотель , Аристотель , Вильгельм Вундт , Лалла Жемчужная

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Современная русская и зарубежная проза / Прочее / Античная литература / Современная проза
Физика повседневности. От мыльных пузырей до квантовых технологий
Физика повседневности. От мыльных пузырей до квантовых технологий

Почему при течении воды в реках возникают меандры? Как заставить бокал запеть? Можно ли построить переговорную трубку между Парижем и Марселем? Какие законы определяют форму капель и пузырьков? Что происходит при приготовлении жаркого? Можно ли попробовать спагетти альденте на вершине Эвереста? А выпить там хороший кофе? На все эти вопросы, как и на многие другие, читатель найдет ответы в этой книге. Каждая страница книги приглашает удивляться, хотя в ней обсуждаются физические явления, лежащие в основе нашей повседневной жизни. В ней не забыты и последние достижения физики: авторы посвящают читателя в тайны квантовой механики и сверхпроводимости, рассказывают о физических основах магнитно-резонансной томографии и о квантовых технологиях. От главы к главе читатель знакомится с неисчислимыми гранями физического мира. Отмеченные Нобелевскими премиями фундаментальные результаты следуют за описаниями, казалось бы, незначительных явлений природы, на которых тем не менее и держится все величественное здание физики.

Андрей Варламов , Аттилио Ригамонти , Жак Виллен

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Мозг: биография. Извилистый путь к пониманию того, как работает наш разум, где хранится память и формируются мысли
Мозг: биография. Извилистый путь к пониманию того, как работает наш разум, где хранится память и формируются мысли

Стремление человечества понять мозг привело к важнейшим открытиям в науке и медицине. В своей захватывающей книге популяризатор науки Мэтью Кобб рассказывает, насколько тернистым был этот путь, ведь дорога к высокотехнологичному настоящему была усеяна чудаками, которые проводили ненужные или жестокие эксперименты.Книга разделена на три части, «Прошлое», «Настоящее» и «Будущее», в которых автор рассказывает о страшных экспериментах ученых-новаторов над людьми ради стремления понять строение и функции самого таинственного органа. В первой части описан период с древних времен, когда сердце (а не мозг) считалось источником мыслей и эмоций. Во второй автор рассказывает, что сегодня практически все научные исследования и разработки контролируют частные компании, и объясняет нам, чем это опасно. В заключительной части Мэтью Кобб строит предположения, в каком направлении будут двигаться исследователи в ближайшем будущем. Ведь, несмотря на невероятные научные прорывы, мы до сих пор имеем лишь смутное представление о работе мозга.

Мэтью Кобб

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука