Читаем Нанотехнологии. Наука, инновации и возможности полностью

Основной задачей в создании крупномасштабных и сложных молекулярных систем является обеспечение именно такого согласованного, «возникающего» из оценки ситуации поведения (биологи называют это подражание естественным клеточным процессам мимикрией), что позволило бы создать аналоги существующих в природе механизмов преобразования энергии, биохимического воздействия и т. п. Непрерывный прогресс в развитии нанотехнологий позволяет надеяться на создание в близком будущем систем описываемого типа, в которых внешние стимулы или сигналы (свет, наличие химических веществ и т. п.) будут приводить к воспроизводимому и согласованному «возникающему» поведению.

В качестве наглядного примера можно привести фотонные кристаллы из пористого кремния, изготовленные по новому методу, предложенному Линком и Сейлором [129] . Нестандартный способ получения этих частиц позволяет формировать кристаллы необычного строения с непривычными физическими свойствами, из-за которых некоторые исследователи называют такие микрочастицы «умными пылинками». Характерной особенностью частиц «умной пыли» выступает то, что они как бы составлены из двух разных пластинок, в результате чего их противоположные поверхности обладают разными свойствами: одна сторона (условно зеленая) является гидрофобной, то есть водоотталкивающей, а другая (условно красная) – гидрофильной. Химики, которые иногда сталкиваются с подобными молекулами (в которых одна часть структуры является гидрофобной, а другая гидрофильной), называют их амфифильными и используют для структурирования различных растворов. Микропылинки пористого кремния описываемого типа сохраняют способность к структурированию, в частности, на водной поверхности они самопроизвольно ориентируются в определенной позиции, формируя монослой, в котором частицы обращены гидрофильными (красными) сторонами к воде, а гидрофобными (зелеными) – к воздуху.

Очень интересным выглядит поведение частиц пористого кремния при добавлении в воду капли гидрофобного растворителя дихлорметана, так как пылинки самоорганизуются на поверхности этой капли, как бы «прилипая» к ней своими гидрофобными участками. В результате такой самосборки в растворе, содержащем никак не связанные друг с другом индивидуальные пылинки, неожиданно возникает макроскопический объект, обладающий собственными оптическими, физическими и другими особенностями (рис. 17.8). Это необычное явление и позволяет говорить об «умной пыли», так как опыты показали, что такие частицы могут достаточно эффективно применяться для детектирования разнообразных химических веществ. Более того, при введении в такие частицы дополнительных распознающих центров, они могут использоваться для детектирования или обеззараживания патогенных микроорганизмов в воде и пище.

Такие вещества могут найти много возможностей практического применения, однако с чисто научной точки зрения в описанном поведении частиц нас должна заинтересовать в первую очередь их способность к самоорганизации, то есть проявлению внутренних закономерностей, управляющих развитием характеристик поведения системы. В рассматриваемом конкретном случае очень важно, что поведение системы на микроскопическом уровне неожиданно меняется при добавлении капли постороннего вещества (дихлорметана), после чего в системе возникают новые макроскопические объекты, то есть проявляется «скрытое» свойство системы.

В настоящее время теория и экспериментальные исследования проявления потенциальных (их можно также назвать скрытыми, внутренними, проявляющимися и т. п.) свойств различных систем переживают период накопления фактов и представлений. Представляется очевидным, что эта проблема является исключительно важной, а ее значение будет непрерывно возрастать по мере создания все более сложных искусственных систем, особенно когда эти системы приобретают новые функциональные способности (сравнимые с функциями биологической клетки), относящиеся, например, к переработке энергии, принятию самостоятельных решений и т. д. Дальнейшее развитие науки и техники (безусловно, связанное с нанотехнологиями) автоматически должно приводить нас к «слиянию» различных научных дисциплин, одним из последствий чего станет доведение «мимикрии» до полного подобия поведения систем. Иными словами, совершенствуя наши знания и технологические приемы, мы будем приближаться к пределу, когда перестанем воспринимать разницу между искусственными и природными системами. Возможно, преодоление этого интеллектуального барьера и позволит нам реально использовать нанотехнологии для улучшения параметров человеческого существования.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже