Когда Дик Дэвис попросил меня провести беседу, он ничего не сказал о видеокамере и всем остальном, а просто предложил мне представить, что я разговариваю с приятелями. Мне и в голову не приходило, что приятелей будет так много! Мне было бы легче, если бы я мог рассказать вам много интересных вещей, но в действительности, конечно, я смогу поведать не очень многое, даже если буду говорить долго.
20.1. Мысли о лекции «Внизу полным-полно места»
Когда в 1960 году я выступил с речью, озаглавленной «Внизу полным-полно места» и посвященной будущим технологиям изготовления разнообразных миниатюрных объектов, в сущности, я говорил об известных вещах. Дело в том, что множество важных понятий (например, числа, информация или вычислительные процессы) вообще никак не связаны с конкретными размерами чего-либо. Никто не мешает записать число очень маленькой цифрой, составленной, например, из атомов (я упоминаю атом, потому что невозможно представить себе более миниатюрный элемент для записи!). Из этого сразу следовало, что мы можем научиться записывать огромный объем информации в очень малых физических формах, что, кстати, и произошло затем за весьма короткое время.
Меня много раз просили еще раз поговорить обо всем этом и высказать свое мнение о происшедших переменах, поэтому тему беседы можно обозначить очень просто – возвращение к лекции «Внизу полным-полно места».
Как я и говорил в 1960 году, мы вполне можем обозначить цифру или любой знак комбинацией всего из нескольких атомов. В принципе, нам хватило бы для записи даже одного атома, однако давайте представим себе, что мы имеем две пригоршни разных типов атомов, например, золота и серебра. Сейчас каждый школьник знает, что этого достаточно для записи, поскольку мы можем просто обозначать цифру 1 отдельным сгустком атомов золота, а цифру 0 – сгустком атомов серебра. Для наглядности представьте себе, что эти атомы имеют форму маленьких красивых кубиков, вдоль ребра которых можно уложить всего около сотни атомов. Располагая последовательно такие крошечные кубики, мы можем записать любое число или любую информацию в очень малом объеме пространства. Например, можно легко подсчитать, что содержание всех книг во всех библиотеках мира (включая картинки, графики и т. п.), записанное такими кубиками, не будет превышать по объему куб с ребром 1/20 дюйма, то есть пылинку, едва различимую невооруженным глазом.
Если вы предпочтете не объемную, а простую запись на поверхности, то эффект оказывается столь же впечатляющим. При уменьшении размеров в 25 тысяч раз все содержание знаменитой «Британской энциклопедии» может быть изложено на кончике иголки, огромная библиотека Калифорнийского технологического института вполне разместится на библиотечной карточке, а вся мировая литература вообще может быть записана на площади страниц газеты
Поскольку я сказал о возможность записи и считывания с использованием пучка электронов, необходимо подчеркнуть – это является вполне осуществимым практически, и несколько лет мне назад прислали изображение текста, уменьшенное примерно в 30 тысяч раз. Размеры букв на картинке составляют около одной десятой микрона! (
Кроме того, в речи 1960 года я много говорил относительно создания крошечных механических устройств типа двигателя или автомобиля, хотя и не мог предложить для них разумного практического применения. Достигнутый в этой области прогресс пока незначителен. Одна из моих идей заключалась в том, чтобы создать микроскопический двигатель, последовательно применяя пантографы (уменьшенные «руки», манипуляторы) или другие механические устройства типа тех, которые используются в дистанционных действиях с радиоактивными препаратами. На каждом этапе механической обработки мы будем пользоваться уменьшающимися в несколько раз (например, в четыре раза) манипуляторами, причем каждый из них начинает свою работу с создания следующего, уменьшенного манипулятора и т. д.
Я тут же предложил приз в 1000 долларов за мотор размером в 1/64 дюйма исходя из того, что такой двигатель невозможно изготовить в обычных условиях простой механической или ручной обработкой металла. Впрочем, это утверждение тоже сложно доказать. Я помню, что после окончания речи Дон Глезер (он потом получил Нобелевскую премию, это что-то да значит!) вдруг сказал мне, что такой мотор искусный мастер сможет изготовить вручную, так что следовало бы сразу указать точность 1/200 дюйма. Помню, как я ответил ему, что такое задание показалось бы невозможным и просто убило бы желание соревноваться у потенциальных мастеров. Поразительно, но Глезер оказался прав, и позднее такой мотор был собран вручную!
Конечно, создание таких микроскопических объектов, хотя бы ради забавы, является очень интересной технической задачей. Взгляните на этот крошечный двигатель, размеры которого примерно соответствуют точке обычного типографского шрифта. Понятно, что невооруженным глазом, собственно говоря, разглядывать нечего. К счастью, изготовивший это устройство и подаривший его мне мистер Мак-Леллан, снабдил игрушку очень красивым и удобным крошечным механизмом с увеличительным стеклом, позволяющим рассматривать двигатель с разных сторон
20.2. Какими возможностями мы обладаем сегодня?
Конечно, мне хочется заглянуть в будущее и оценить прогресс наших возможностей создавать миниатюрные объекты. В той лекции я говорил об очень многом, от крошечных автомобилей до средств записи, компьютеров и информации. Хотя название сегодняшней лекции связано с бесконечно малыми машинами (мне хочется употребить даже старый термин машинерия), но в действительности, говоря об очень малых объектах, мы не можем уходить от проблем вычислительной техники и информации.
На первом слайде я просто демонстрирую некоторые микроскопические объекты, уже запущенные в коммерческое производство. Речь идет о вычислительных чипах размерами около 3 х 4 мм, в которых толщина соединительных проводов составляет несколько микрон (напомню, что микрон составляет одну миллионную часть метра или тысячную часть миллиметра), причем поперечные размеры при их изготовлении регулируются с точностью около трех мирон. Компьютерные чипы начали производить пять лет назад, поэтому сейчас уже существуют коммерческие образцы с точностью изготовления проводов до 0,5 микрона.
Такие чипы изготавливаются, как известно, напылением последовательных слоев через так называемые маски. (
Настоящая и серьезная проблема заключается в том, сколь долго мы можем развивать и углублять эти технологии? Чуть позднее я буду говорить о том, насколько миниатюризация необходима и ценна для вычислительной техники, однако стоит вспомнить, что длина световых волн конечна, то есть вся технология литографического изготовления паттернов и масок принципиально не может обеспечивать точность выше длины полуволны используемого источника света. В настоящий момент в лабораторных условиях удается добиться точности около половины микрона, а в коммерческих технологических процессах она составляет примерно один микрон.
Итак, вы представляете себе наши возможности в лабораториях и на производстве, но я хочу предложить еще одну тему для размышлений. Майкл Исааксон из Лаборатории субмикронных исследований связался с одним моих друзей, художником-модернистом по имени Том Ван-Сант (Tom Van Sant). Я лично восхищаюсь его творчеством и считаю его истинным модернистом, то есть человеком, способным не только понимать современную культуру, технологию, науку и даже сущность природы, но и находить новые возможности их отображения и восприятия.
Позвольте показать вам на следующем слайде одну картин Ван-Санта. На первый взгляд, это просто произведение искусства, не правда ли? Зритель видит изображение человеческого глаза, отчетливо различая ресницы, брови и даже зрачок. Таких изображений в истории искусства было создано множество, но фокус состоит в том, что в данном случае вы видите лишь увеличенную копию самого маленького изображения глаза, созданного человечеством вообще! В действительности размеры картины составляют лишь около четверти микрона, то есть 250 миллимикронов, так что размеры зрачка равны 15–20 миллимикрон, а по диаметру центральной точки в зрачке можно уложить лишь около ста атомов! Легко понять, что художник вышел практически к мыслимым границам миниатюризации, так дальнейшее уменьшение деталей изображения потребует от него использования отдельных атомов. Нельзя представить себе никакого дальнейшего развития этой техники.
Я надеюсь, что картина понравилась и хочу поразить вас еще одним его необычным произведением. Поскольку ему нравится экспериментировать с изображением человеческого глаза, на следующем слайде вы вновь видите глаз. Картина очень хороша по колориту и форме, ее можно отнести к настоящим произведениям искусства, но что-то в ней настораживает, не правда ли? Я прошу зрителей, понявших смысл изображения, не выдавать секрета, поскольку я хочу пояснить секрет картины следующими слайдами, на которых детали даны в ином масштабе. Увеличив изображение, мы вдруг начинаем различать детали и штрихи, которые художник использовал для нанесения «морщинок» и особенностей глазницы, а при дальнейшем увеличении (следующий слайд) мы вдруг понимаем, что изображение глаза особым образом «вмонтировано» в общий вид города Лос-Анжелес на снимке, полученном из космоса! Человеческий глаз на картине представляет собой лишь элемент картины, и сейчас я поясню, как художнику удалось получить столь необычное изображение.
Снимок действительно сделан из космоса по системе LANDSAT, а глаз в углу картины предварительно создал на земле сам художник довольно необычным трюком. Дело в том, что Ван-Сант построил в пустыне рядом с Лос-Анжелесом устройство, моделирующее глаз, как бы имеющий в диаметре около 2,5 километров. Эту совершенно нетривиальную задачу художник решил весьма оригинальным методом. Он специальным образом расположил на очень большой территории набор из 24 зеркал с длиной стороны всего около 2 футов (~60 сантиметров), рассчитав их положение и ориентацию таким образом, чтобы отраженный ими солнечный свет попадал именно в ту точку, где должен находиться спутник LANDSAT, пролетая в очередной раз над городом Лос-Анжелес. Сигналы от зеркал попадают в объектив спутника, накапливаются при последовательных пролетах над городом, обрабатываются запоминающим устройством спутника и, в конечном итоге, создают со временем вполне устойчивые точки или элементы изображения (специалисты по связи называют их пикселями), складывающиеся в картину огромного человеческого глаза на краю города. Именно эту картину я и показал на первом слайде. Вот что я называю настоящим модернистским искусством! Выше я говорил о самом крошечном изображении, а описанное изображение можно считать самым большим произведением искусства, когда-либо созданным человеком. Изучив более внимательно исходную картину, можно заметить небольшое искажение, связанное с отсутствием одной точки на изображении. Когда художник с друзьями стал проверять свою установку, то оказалось, что одно из зеркал действительно сброшено с опоры и на нем легко различимы следы лапок диких кроликов, расплодившихся в окрестностях города. Кролик сумел уничтожить одно из зеркал и лишить Ван-Санта одного из пикселей на изображении.
А теперь давайте сравним обе картины и попробуем провести для них некоторые количественные оценки. Достижение Ван-Санта заключается в том, что он дает нам два изображения человеческого глаза, одно из которых в 100 000 раз меньше, а второе – в 100 000 раз больше нормального, и это неожиданным и странным образом позволяет нам оценить огромную разницу в масштабах изображения. Мы вдруг увидели один и тот же объект одновременно в двух ракурсах: размером в пылинку и в виде структуры, растянувшейся в 2,5 километра по калифорнийской пустыне. Само ощущение такого изменения масштабов является восхитительным, но меня интересует не художественное восприятие, а именно изменение масштабов, причем не столько в сторону уменьшения, сколько в сторону увеличения. Как будет выглядеть глаз, увеличенный еще в 100 000 раз, когда его размеры сравнятся с кольцами Сатурна, а сама планета будет соответствовать зрачку?
Я использовал эти картины, чтобы дать возможность ощутить проблемы, связанные с изменением масштабов, продемонстрировать существующие возможности миниатюризации и оценить прогресс, достигнутый в этой области со времени лекции 1960 года. Чуть позднее я поделюсь мыслями об очень важном вопросе дальнейшего уменьшения размеров вычислительных устройств, а сейчас мне хочется рассказать еще кое-что о миниатюрных машинах и устройствах.
20.3. Как можно изготавливать крошечные машины?
Под термином «машина» я понимаю любое составленное из подвижных частей и деталей (типа колес и других механических деталей) устройство, поведением которого мы можем управлять. В качестве общего термина тут подошло бы несколько устаревшее понятие «машинерия», в котором особо важным для определения является наличие подвижных частей или деталей, представляющих собой четко различимые объекты. Я должен сразу признаться, что относящиеся к миниатюрным машинам мысли и предсказания лекции «Внизу полным-полно места» 1960 года оказались в основном ошибочными. Точнее говоря, мои предсказания о быстром развитии разнообразных механических микроустройств просто не сбылись. Единственным полноценным образцом такого микродвигателя можно считать мотор Мак-Леллана, который я только что вам продемонстрировал.
Возможно, неудача моих предсказаний связана и с тем, что мы так и нашли никакого практического применения для этих маленьких машин, и я сам не понимаю, почему меня так заинтересовала проблема сборки микроскопических механических устройств. Я поделюсь с вами своими мыслями и идеями на этот счет, но повторяю – это только игра, и я сам не понимаю своей увлеченности этими игрушками. Я много раз тщетно пытался найти для них какое-нибудь разумное практическое применение, но пока мне это не удалось. Я понимаю свои неудачи, а вы можете шутить по поводу предложений, которые я сейчас выскажу. Договорились?
Прежде всего, давайте задумаемся о том, как мы можем изготовить такие машины? Повторю, что я говорю об очень маленьких, крошечных машинах и устройствах, размеры которых не превышают десяти микрон (одной сотой миллиметра), что в сорок раз меньше того двигателя, который я показывал. Такие машины практически невидимы при рассмотрении невооруженным глазом. Вы почти наверняка удивитесь, но я начну с утверждения, что современная техника позволяет легко (я повторяю, легко!) изготавливать такие устройства. Напомню, что в каждом измерении такой мотор будет меньше двигателя Мак-Леллана в сорок раз, то есть по объему он будет меньше в 64 000 раз! Я уверен, что, используя современную полупроводниковую технику, можно серийно производить такие двигатели, и я сейчас предложу вполне разумную технологию такого производства.
Дело в том, что, применяя обычную технику последовательного напыления слоев кристаллических структур, можно дополнительно вводить слои или участки из веществ, которые могут быть в дальнейшем удалены из структуры (например, химическим растворением или травлением). Такие «вставки» лишь незначительно увеличат размеры изделий, но, комбинируя их в нужном порядке, можно образовать практически любую механическую конструкцию. От технологов требуется лишь научиться напылять участки требуемой формы и размеров из таких материалов, которые позднее могут быть удалены растворением, выпариваем, испарением и т. п. Вспомните, что классическая техника отливки заключается в изготовлении образцов из разнообразных материалов (типа воска), которые позднее растапливаются и вытекают из формы под воздействием жидкого металла. Ничто не мешает нам использовать такой метод и такие материалы для изготовления миниатюрных устройств, а материалы можно по-прежнему условно называть «мягким воском». В процессе напыления вы лепите из этого «воска» структуры требуемой формы, вводите между ними необходимые детали из кремния или двуокиси кремния и т. п., а затем вытапливаете «воск» удобным способом и получаете запланированную микроскопическую структуру. Я уверен, что, комбинируя такие процессы, уже сейчас вполне можно изготовить двигатель, линейные размеры которого будут в 40 раз меньше, чем у двигателя Мак-Леллана.
Вы помните, что я закончил лекцию «Внизу полным-полно места» обещанием приза в 1000 долларов тому, кто первый изготовит работающий электродвигатель с внешним управлением, объем которого не превышает 1/64 кубического дюйма. По тем временам сумма приза была довольно внушительной, но я был холостяком и не очень беспокоился о расходах. Помню, что когда позднее перед вступлением в брак я объяснял невесте свое невеселое финансовое положение, она удивилась и сказала, что не рассчитывала на многое, но и не представляла таких сложностей. Уже после свадебного путешествия я вдруг вспомнил, что обещал еще тысячу долларов за крошечный моторчик. Боюсь, что жена надолго потеряла доверие к моим способностям управлять семейным бюджетом вообще, выслушав в робкие объяснения по этому поводу.
Сейчас, когда я вынужден заботиться о семье и думать о том, как заплатить за уроки верховой езды для дочки и обучение сына в колледже, я не могу, при всем желании, обещать такие призы за достижения в создании микроскопических изделий. К счастью, мистер Мак-Леллан сказал, что изготовил двигатель не ради приза, а всего лишь из желания принять вызов и решить интересную техническую головоломку.
Изготовив конструкцию с двигающимися частями, можно заставить их перемещаться под воздействием электростатических сил. Внешнее управление может осуществляться по микропроводам (формирование которых, кстати, давно освоено производителями полупроводниковой техники), которые могут быть присоединены к компьютеру для полной автоматизации и точности управления. Таким образом, практически мы можем уже сейчас заняться изготовлением микроскопических роторов, двигателей и других электромеханических устройств.