Читаем Наука о данных. Базовый курс полностью

Статистика — это научная отрасль, которая занимается сбором и анализом данных. Первоначально статистика собирала и анализировала информацию о государстве, такую как демографические данные и экономические показатели. Со временем количество типов данных, к которым применялся статистический анализ, увеличивалось, и сегодня статистика используется для анализа любых типов данных. Простейшая форма статистического анализа — обобщение набора данных в терминах сводной (описательной) статистики (включая средние значения, такие как среднее арифметическое, или показатели колебаний, такие как диапазон

). Однако в XVII–XVIII вв. работы Джероламо Кардано, Блеза Паскаля, Якоба Бернулли, Абрахама де Муавра, Томаса Байеса и Ричарда Прайса заложили основы теории вероятностей, и в течение XIX в. многие статистики начали использовать распределение вероятностей как часть аналитического инструментария. Эти новые достижения в математике позволили выйти за рамки описательной статистики и перейти к статистическому обучению. Пьер-Симон де Лаплас и Карл Фридрих Гаусс — два наиболее видных математика XIX в. Оба они внесли заметный вклад в статистическое обучение и современную науку о данных. Лаплас использовал интуитивные прозрения Томаса Байеса и Ричарда Прайса и превратил их в первую версию того, что мы сейчас называем теоремой Байеса. Гаусс в процессе поиска пропавшей карликовой планеты Цереры разработал метод наименьших квадратов
. Этот метод позволяет нам найти наилучшую модель, которая соответствует набору данных, так что ошибка в ее подборе сводится к минимальной сумме квадратов разностей между опорными точками в наборе данных и в модели. Метод наименьших квадратов послужил основой для статистических методов обучения, таких как линейная регрессия и логистическая регрессия, а также для разработки моделей нейронных сетей
искусственного интеллекта.

Между 1780 и 1820 гг., примерно в то же время, когда Лаплас и Гаусс вносили свой вклад в статистическое обучение, шотландский инженер Уильям Плейфер изобрел статистические графики и заложил основы современной визуализации данных и поискового анализа данных (EDA). Плейфер изобрел линейный график

и комбинированную диаграмму для временных рядов данных, гистограмму, чтобы проиллюстрировать сравнение значений, принадлежащих разным категориям, и круговую диаграмму для наглядного изображения долей. Преимущество визуализации числовых данных заключается в том, что она позволяет использовать наши мощные зрительные возможности для обобщения, сравнения и интерпретации данных. Следует признать, что визуализировать большие (с множеством опорных точек) или сложные (с множеством атрибутов) наборы данных довольно трудно, но визуализация по-прежнему остается важной составляющей науки о данных. В частности, она помогает ученым рассматривать и понимать данные, с которыми они работают. Визуализация также может быть полезна для презентации результатов проекта. Со времен Плейфера разнообразие видов графического отображения данных неуклонно росло, и сегодня продолжаются разработки новых подходов в области визуализации больших многомерных наборов данных. В частности, не так давно был разработан алгоритм стохастического вложения соседей с t-распределением (t-SNE), который применяется при сокращении многомерных данных до двух или трех измерений, тем самым облегчая их визуализацию.

Перейти на страницу:

Похожие книги

C++ Primer Plus
C++ Primer Plus

C++ Primer Plus is a carefully crafted, complete tutorial on one of the most significant and widely used programming languages today. An accessible and easy-to-use self-study guide, this book is appropriate for both serious students of programming as well as developers already proficient in other languages.The sixth edition of C++ Primer Plus has been updated and expanded to cover the latest developments in C++, including a detailed look at the new C++11 standard.Author and educator Stephen Prata has created an introduction to C++ that is instructive, clear, and insightful. Fundamental programming concepts are explained along with details of the C++ language. Many short, practical examples illustrate just one or two concepts at a time, encouraging readers to master new topics by immediately putting them to use.Review questions and programming exercises at the end of each chapter help readers zero in on the most critical information and digest the most difficult concepts.In C++ Primer Plus, you'll find depth, breadth, and a variety of teaching techniques and tools to enhance your learning:• A new detailed chapter on the changes and additional capabilities introduced in the C++11 standard• Complete, integrated discussion of both basic C language and additional C++ features• Clear guidance about when and why to use a feature• Hands-on learning with concise and simple examples that develop your understanding a concept or two at a time• Hundreds of practical sample programs• Review questions and programming exercises at the end of each chapter to test your understanding• Coverage of generic C++ gives you the greatest possible flexibility• Teaches the ISO standard, including discussions of templates, the Standard Template Library, the string class, exceptions, RTTI, and namespaces

Стивен Прата

Программирование, программы, базы данных
Разработка приложений в среде Linux. Второе издание
Разработка приложений в среде Linux. Второе издание

Книга известных профессионалов в области разработки коммерческих приложений в Linux представляет СЃРѕР±РѕР№ отличный справочник для широкого круга программистов в Linux, а также тех разработчиков на языке С, которые перешли в среду Linux из РґСЂСѓРіРёС… операционных систем. РџРѕРґСЂРѕР±но рассматриваются концепции, лежащие в основе процесса создания системных приложений, а также разнообразные доступные инструменты и библиотеки. Среди рассматриваемых в книге вопросов можно выделить анализ особенностей применения лицензий GNU, использование СЃРІРѕР±одно распространяемых компиляторов и библиотек, системное программирование для Linux, а также написание и отладка собственных переносимых библиотек. Р

Майкл К. Джонсон , Эрик В. Троан

Программирование, программы, базы данных
3ds Max 2008
3ds Max 2008

Одни уверены, что нет лучшего способа обучения 3ds Мах, чем прочитать хорошую книгу. Другие склоняются к тому, что эффективнее учиться у преподавателя, который показывает, что и как нужно делать. Данное издание объединяет оба подхода. Его цель – сделать освоение 3ds Мах 2008 максимально быстрым и результативным. Часто после изучения книги у читателя возникают вопросы, почему не получился тот или иной пример. Видеокурс – это гарантия, что такие вопросы не возникнут: ведь автор не только рассказывает, но и показывает, как нужно работать в 3ds Мах.В отличие от большинства интерактивных курсов, где работа в 3ds Мах иллюстрируется на кубиках-шариках, данный видеокурс полностью практический. Все приемы работы с инструментами 3ds Мах 2008 показаны на конкретных примерах, благодаря чему после просмотра курса читатель сможет самостоятельно выполнять даже сложные проекты.

Владимир Антонович Верстак , Владимир Верстак

Программирование, программы, базы данных / Программное обеспечение / Книги по IT