Читаем Наука о живом. Современные концепции в биологии полностью

Гунтер Стент, один из наиболее тонких ее историков, различает в развитии молекулярной биологии два основных направления: структурное (главным образом европейское) и информационное, т. е. занимающееся вопросами хранения и передачи наследственной информации в биологических системах (последнее, вероятно, достигло наибольшего развития в США).

Структурная молекулярная биология, пожалуй, получила свое начало, когда У. Т. Эстбюри отважно применил методы рентгеноструктурного анализа к таким биологическим объектам, как перья, волосы, сухожилия и волокна кровяного сгустка. Важнейший результат работ Эстбюри — открытие, что изученные им биологические структуры имеют в сущности кристаллическую упорядоченность. Это придало особую соль знаменитому афоризму Шредингера: «Так называемые аморфные твердые тела на деле либо не аморфны, либо не тверды». Исследования Эстбюри навсегда уничтожили идею о существовании нерушимой границы между физическими объектами и веществами живого мира — такой переворот в понятиях сходен с тем, который, как утверждают (задним числом), произвел осуществленный немецким химиком Фридрихом Вёлером в 1828 году синтез мочевины, но по значению далеко его превосходят. {108}

Установление структуры белков — работа, которая когда-нибудь даст нам возможность объяснять большинство протекающих в организме химических изменений на молекулярном уровне, — стало возможным благодаря целому ряду отдельных открытий; одним из них была разработка английским биохимиком Фредериком Сангером химических методов определения последовательности белков, т. е. определения последовательности распределения различных составляющих их аминокислот вдоль полипептидной цепи, что дает возможность определять структуру белков в линейном направлении, известную как первичная структура. Вторичной структурой называют дополнительную детализацию основания, особенно в том, что касается его разветвлений. Третичная структура белка — это общий рисунок его изгибов, выпячиваний и т. д. и полное его определение как трехмерной структуры. Когда английские биохимики Макс Перуц и Джон Кендрю, исследуя миоглобин, впервые дали исчерпывающее представление о пространственном строении белковой молекулы, специалисты по молекулярной биологии расценили их работу как важную веху в истории биологии. С тех пор Р. Валентайн и X. Г. Перейра довольно хорошо разъяснили строение одного из вирусов — аденовируса 12.

У. Т. Эстбюри попытался установить строение нуклеиновых кислот, но рентгеноструктурный анализ и расшифровка кристаллограмм были тогда слишком примитивными, а применявшиеся методы приготовления ДНК — слишком грубыми, так что успеха он не добился. Окончательное объяснение строения ДНК родилось из химических исследований американского биохимика Эрвина Чаргаффа и рентгеноструктурных анализов Фрэнсиса Крика и Джеймса Уотсона в Кембридже, а также Мориса Уилкинса и Розалинд Франклин в лондонском Кингз-колледже. Установление ее пространственной двухспиральной структуры стало двойным триумфом, так как оно одновременно разрешило кристаллографическую проблему и дало подходящую структурную основу для истолкования уникальной функции ДНК как носителя генетической информации.

Информационное направление в истории молекулярной биологии сложилось, когда Эвери, Маклеод {109} и Маккарти открыли, что дезоксирибонуклеиновая кислота представляет собой своего рода биологический философский камень, поскольку выяснилось, что именно ДНК вызывает трансформацию одной разновидности пневмококков в другую (см. гл. 11) — до тех пор это явление ставило всех в тупик. На протяжении нескольких следующих лет изучение бактерий и вирусов, а также обычные генетические исследования неопровержимо доказали, что ДНК — действительно хранилище наследственной информации и средство передачи ее от одного поколения к другому. Не считая ничтожного количества ДНК в митохондриях, вся ДНК животных клеток, в том числе и зародышевых, сосредоточена в ядре, как и следовало ожидать, учитывая тот факт, что ядро зародышевой клетки — это единственное материальное звено, связывающее поколения.

В молекулярной биологии общепринято положение, что генетически зашифрованная информация передается только в одном направлении — от нуклеиновой кислоты к белку, но не наоборот. Обычные биологи долго не принимали этого взгляда: они были чрезвычайно недовольны тем, что белки свергнуты со своего трона и им уже больше не приписывается то осуществление всех химических преобразований в организме, которое прежде представлялось их естественным правом. Согласно этому новому взгляду, нуклеиновые кислоты должны определять строение всех белков, производимых в клетке. Очень важная часть молекулярной биологии, называемая иногда «молекулярной биохимией» (попробуйте представить себе немолекулярную биохимию!), занимается определением средств, с помощью которых строение той или иной нуклеиновой кислоты в конечном счете картируется в строении того или иного белка.

Перейти на страницу:

Похожие книги

Расширенный фенотип
Расширенный фенотип

«Расширенный фенотип» – одна из лучших книг известного учёного и видного популяризатора науки Ричарда Докинза. Сам автор так сказал про неё в предисловии ко второму изданию: «Думаю, что у большинства учёных – большинства авторов – есть какая-то одна публикация, про которую они говорили бы так: не страшно, если вы никогда не читали моих трудов кроме "этого", но "этот" пожалуйста прочтите. Для меня таким трудом является "Расширенный фенотип"». Помимо изложения интересной научной доктрины, а также весьма широкого обзора трудов других исследователей-эволюционистов, книга важна своей глубоко материалистической философской и мировоззренческой позицией, справедливо отмеченной и высоко оцененной в послесловии профессионального философа Даниэла Деннета.

Ричард Докинз

Биология, биофизика, биохимия
Почему мы любим. Природа и химия романтической любви
Почему мы любим. Природа и химия романтической любви

Каждый из нас имеет опыт счастья и отчаяния, которые дарит любовь. И уже много веков люди пытаются понять, что это такое. Почему мы теряем голову? Как пережить отказ? Что происходит с чувствами супругов в долгом браке? Как завоевать любовь и можно ли ее сохранить? Книга известного антрополога Хелен Фишер предлагает новые и подчас неожиданные ответы на эти вопросы. Сканируя мозг самых разных пациентов, она выявила важные закономерности, начиная с того, что в момент влюбленности некоторые зоны мозга «светятся». Исследуя типы любви, ее эволюцию, процессы, происходящие в организме человека и других созданий, – от волков до уток и шимпанзе, – автор дает научное объяснение самым удивительным проявлениям этой универсальной движущей силы и великого дара.

Хелен Фишер

Биология, биофизика, биохимия / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Медицина