Во-вторых, мы синтезируем цепочки ДНК мамонта, соответствующие тем фрагментам генома, которые хотим изменить. Для этого мы соединяем вместе азотистые основания А, Г, Ц и Т, в качестве образца используя собранную часть генома мамонта. В результате мы получим фрагменты ДНК, которые в дальнейшем нужно будет вставить в геном слона. Эти синтезированные участки могут быть очень короткими (всего несколько пар оснований) или немного длиннее (несколько сотен или даже несколько тысяч пар оснований), но их длина будет существенно меньше длины хромосомы и определенно окажется в пределах наших текущих возможностей в области синтеза ДНК.
В-третьих, мы создаем инструмент (назовем его «молекулярными ножницами»), чтобы находить в точности тот фрагмент генома слона, который мы хотим изменить, и связаться с ним. Существует несколько таких инструментов, ниже я опишу их все.
В-четвертых, мы переносим в ядро слоновьей клетки молекулярные ножницы и синтезированные фрагменты ДНК мамонта. Молекулярные ножницы точно определяют участок генома слона, подлежащий редактированию, связываются с ним и разрезают нить ДНК надвое. Поскольку разрыв ДНК пагубно влияет на клетку, в ходе эволюции появился клеточный механизм, предназначенный специально для починки таких повреждений. Он приходит в действие и ремонтирует поврежденный участок, вставляя на место фрагмента ДНК слона фрагмент ДНК мамонта.
В-пятых, мы оцениваем успешность процедуры с помощью эксперимента, который показывает, происходит ли теперь в клетке экспрессия гена мамонта вместо гена слона. На этом шаге мы можем определить, какие клетки были отредактированы, и затем оценить, как эти изменения повлияли на фенотип клетки (если вообще повлияли).
Наконец, клетки, в которых успешно удалось вырезать и вставить участки генома, используются для создания методом ядерного переноса живых организмов с избирательно отредактированными геномами.
Думаю, можно с уверенностью сказать от лица всех, посетивших конференцию, что нас ошеломило то, насколько реальным и достижимым сделал возрождение вымерших видов Джордж в своей презентации. Его подход показался простым, даже элегантным. Неужели появление живых, дышащих мамонтов и правда возможно в сроки, предложенные профессором Иритани (пусть и другим путем)?
В то время Джордж еще даже не начал работать с ДНК слона. Геном мамонта все еще находился на очень ранней стадии сборки, и, по существу, было не до конца понятно, какие участки слоновьего генома следует редактировать. Геном странствующего голубя также находился в процессе секвенирования, как и геном его ближайшего живого родственника, полосатохвостого голубя, поэтому наши представления о том, что именно мы должны изменить, тоже оставались очень смутными. Но благодаря этой презентации наша цель обрела четкие очертания. Что еще важнее, она оказалась достижимой. Нам не нужно секвенировать полный геном. Нам просто нужно каким-то образом выяснить, какие части генома имеют значение, и секвенировать их.
Молекулярные ножницы и ферментный клей
Хотя редактирование генома в описании Джорджа Чёрча выглядит довольно просто, сам процесс (что неудивительно) сопровождается серьезными техническими трудностями. Чтобы добиться успеха, редактирование генома должно быть
Ключом к успешному редактированию генома стало открытие и усовершенствование различных типов