Читаем Нейросети. Генерация изображений полностью

scikit-learn предоставляет класс `MinMaxScaler`, который позволяет выполнить минимакс-нормализацию данных и привести их к определенному диапазону значений. Также есть класс `StandardScaler` для стандартизации данных путем приведения их к нулевому среднему и единичному стандартному отклонению.

Как две основные библиотеки глубокого обучения, TensorFlow и PyTorch также предоставляют возможности для нормализации данных. В TensorFlow это можно сделать с помощью функции `tf.keras.layers.BatchNormalization`, а в PyTorch с помощью класса `torch.nn.BatchNorm2d`.

При работе с таблицами данных в Pandas можно использовать функции `DataFrame.min` и `DataFrame.max` для вычисления минимального и максимального значения в колонках, а затем выполнить нормализацию или стандартизацию данных с помощью арифметических операций.

Пример нормализации данных с использованием MinMaxScaler из библиотеки scikit-learn:

```python

from sklearn.preprocessing import MinMaxScaler

# Пример данных (замените data на свои данные)

data = [[10], [5], [3], [15]]

# Создание объекта MinMaxScaler и выполнение нормализации

scaler = MinMaxScaler(feature_range=(-1, 1))

normalized_data = scaler.fit_transform(data)

print(normalized_data)

```

В результате данных будут приведены к диапазону от -1 до 1. Конкретный выбор инструмента зависит от ваших потребностей и предпочтений, а также от того, в какой библиотеке вы работаете и с каким типом данных.

***

Инструменты и библиотеки для очистки данных от нежелательных символов или шумов в изображениях:

OpenCV:

– Фильтры Гаусса (`cv2.GaussianBlur`) для размытия изображений и удаления шума.

– Медианные фильтры (`cv2.medianBlur`) для сглаживания и устранения шума.

– Билатеральные фильтры (`cv2.bilateralFilter`) для сглаживания, сохраняющего границы и устранения шума.

scikit-image:

– Фильтры Гаусса (`skimage.filters.gaussian`) для размытия изображений и удаления шума.

– Медианные фильтры (`skimage.filters.median`) для сглаживания и устранения шума.

– Адаптивные фильтры (`skimage.restoration.denoise_tv_bregman`) для денойзинга с сохранением границ.

Denoising Autoencoders (DAE):

– Нейронные сети, такие как TensorFlow или PyTorch, могут быть использованы для реализации денойзинг автоэнкодеров.

Методы сегментации:

– Пороговая сегментация (`cv2.threshold`) для разделения изображения на передний и задний план.

– Вычитание фона (`cv2.absdiff`) для удаления нежелательного фона из изображения.

Алгоритмы устранения:

– Морфологические операции (`cv2.erode`, `cv2.dilate`) для устранения мелких артефактов или шумов.

– Фильтры устранения шума (`cv2.fastNlMeansDenoising`) для удаления шумов с сохранением деталей.

Улучшение качества:

– Методы суперразрешения (`skimage.transform.resize`, `cv2.resize`) для увеличения размеров изображений с улучшением качества.

– Фильтры повышения резкости (`cv2.filter2D`, `skimage.filters.unsharp_mask`) для улучшения четкости изображений.

Для примера очистки изображений от шумов, мы будем использовать библиотеку `scikit-image`. Установите ее, если она еще не установлена, используя команду:

```bash

pip install scikit-image

```

Предположим, у нас есть изображение с шумом и мы хотим очистить его. Для этого используем фильтр Гаусса и медианный фильтр. Ниже приведен пример кода:

```python

import numpy as np

import matplotlib.pyplot as plt

from skimage import io, img_as_ubyte, img_as_float

from skimage.filters import gaussian, median

# Загрузим изображение с шумом

image_with_noise = io.imread('image_with_noise.jpg')

image_with_noise = img_as_float(image_with_noise)

# Применим фильтр Гаусса для устранения шума

image_gaussian_filtered = gaussian(image_with_noise, sigma=1)

# Применим медианный фильтр для устранения шума

image_median_filtered = median(image_with_noise)

# Выведем исходное изображение и обработанные изображения для сравнения

plt.figure(figsize=(10, 4))

plt.subplot(131)

plt.imshow(image_with_noise, cmap='gray')

plt.title('Исходное изображение с шумом')

plt.subplot(132)

plt.imshow(image_gaussian_filtered, cmap='gray')

plt.title('Фильтр Гаусса')

plt.subplot(133)

plt.imshow(image_median_filtered, cmap='gray')

plt.title('Медианный фильтр')

plt.tight_layout

plt.show

```

Обратите внимание, что в этом примере мы загружаем изображение, приводим его к числовому формату с плавающей точкой, применяем фильтры Гаусса и медианный фильтр для устранения шума, и затем выводим исходное изображение с шумом и обработанные изображения для сравнения.

Пожалуйста, замените `'image_with_noise.jpg'` на путь к вашему изображению с шумом.

***

Для работы с изображениями и их токенизации на отдельные символы или пиксели обычно используется библиотека Python `PIL` (Python Imaging Library), которая теперь известна как `Pillow`. `Pillow` является форком оригинальной библиотеки `PIL` и предоставляет мощные инструменты для работы с изображениями в Python.

Перейти на страницу:

Похожие книги

Самоучитель UML
Самоучитель UML

Самоучитель UMLПервое издание.В книге рассматриваются основы UML – унифицированного языка моделирования для описания, визуализации и документирования объектно-ориентированных систем и бизнес-процессов в ходе разработки программных приложений. Подробно описываются базовые понятия UML, необходимые для построения объектно-ориентированной модели системы с использованием графической нотации. Изложение сопровождается примерами разработки отдельных диаграмм, которые необходимы для представления информационной модели системы. Цель книги – помочь программистам освоить новую методологию разработки корпоративных программных приложений для последующего применения полученных знаний с использованием соответствующих CASE-инструментов.

Александр Васильевич Леоненков , Александр Леоненков

Зарубежная компьютерная, околокомпьютерная литература / Программирование / Прочая компьютерная литература / Книги по IT
С компьютером на ты. Самое необходимое
С компьютером на ты. Самое необходимое

Рассказывается о работе в операционной системе Windows (на примере версий XP и 7), текстовом редакторе Word 2010 и других приложениях, необходимых каждому пользователю: архиваторах, антивирусах и программах для просмотра видео и прослушивания музыки (Winamp, QuickTime Pro). Большое внимание уделяется работе в Интернете. Рассказывается о программах для просмотра Web-страниц, об электронной почте, а также о различных полезных приложениях для работы в сети — менеджерах закачек файлов, ICQ, Windows Live Messenger, MSN и многих других. Во втором издании рассмотрена новая ОС — Windows 7, а также последние версии приложений для пользователей.Для начинающих пользователей ПК.

Андрей Александрович Егоров , Андрей Егоров

Зарубежная компьютерная, околокомпьютерная литература / Прочая компьютерная литература / Книги по IT
Omert@. Руководство по компьютерной безопасности и защите информации для Больших Боссов
Omert@. Руководство по компьютерной безопасности и защите информации для Больших Боссов

Увы, друг мой, защита твоей информации - или хотя бы четкое понимание того, что это такое и как подобная защита должна строиться - это Твое Личное Дело! Не Cosa Nostra (хотя твои проблемы могут стать и Нашим Делом тоже), а Cosa Roba - Твое Дело!  Я знаю, что ты солидный человек, который привык платить, чтобы за него решали проблемы. Однако есть проблемы, которые за тебя никто не решит, - даже за очень большие деньги. Например, заниматься любовью со своей женой должен ты сам. Но кто тебе сказал, что защита твоей информации - это менее интимное дело, и его можно поручить постороннему?  Первая книга по безопасности для Менеджеров, а не для ботаников-компьютерщиков, информации от широко неизвестного благодаря своей репутации эксперта международного класса. Только благодаря ей Большой Босс сможет понять, каким образом он сможет чувствовать себя хотя бы в относительной безопасности!  Ты должен сам знать, что такое безопасность информации! Ни один нанятый специалист не решит это за тебя!  Если ты нанимаешь студента-компьютерщика за двести баксов в месяц и совершенно серьезно считаешь его специалистом по информационной безопасности, - не понятно, как ты вообще смог стать менеджером подобного уровня.

Алекс Экслер , Карл Шкафиц

Зарубежная компьютерная, околокомпьютерная литература / Прочая компьютерная литература / Книги по IT