Читаем Нейросети. Генерация изображений полностью

# Сборка батча из реальных и сгенерированных изображений

X = np.concatenate([image_batch, generated_images])

# Создание векторов меток для реальных и сгенерированных изображений

y_dis = np.zeros(2 * batch_size)

y_dis[:batch_size] = 0.9 # односторонний мягкий ярлык для гладкости

# Обучение дискриминатора на батче

discriminator.trainable = True

d_loss = discriminator.train_on_batch(X, y_dis)

# Обучение генератора

noise = np.random.normal(0, 1, size=[batch_size, random_dim])

y_gen = np.ones(batch_size)

discriminator.trainable = False

g_loss = gan.train_on_batch(noise, y_gen)

if epoch % 100 == 0:

print(f"Epoch: {epoch}, Discriminator Loss: {d_loss}, Generator Loss: {g_loss}")

# Обучение GAN

gan = tf.keras.Sequential([generator, discriminator])

gan.compile(loss='binary_crossentropy', optimizer=generator_optimizer)

train_gan

```

Код представляет собой простую реализацию генеративной сети (GAN) для генерации реалистичных изображений с использованием библиотек TensorFlow и Keras в Python. Давайте подробно опишем каждую часть кода:

1. Загрузка данных MNIST:

– Загружается набор данных MNIST с рукописными цифрами с помощью функции `tf.keras.datasets.mnist.load_data`.

– Обучающие изображения сохраняются в переменной `train_images`, а метки классов (которые в данном случае не используются) – в переменной `_`.

– Изображения преобразуются в одномерный формат и нормализуются в диапазоне [-1, 1], чтобы облегчить обучение модели.

2. Определение гиперпараметров:

– `random_dim`: размерность входного шумового вектора (латентного пространства), который будет использоваться для генерации изображений.

– `epochs`: количество эпох обучения GAN.

– `batch_size`: размер батча, используемого для обучения на каждой итерации.

3. Создание генератора (`build_generator`):

– Генератор представляет собой нейронную сеть, которая принимает случайный шум или вектор из латентного пространства и генерирует синтетические изображения.

– В данном примере генератор состоит из полносвязных слоев с функцией активации LeakyReLU и слоями BatchNormalization для стабилизации обучения.

– Финальный слой генератора имеет функцию активации `tanh`, чтобы ограничить значения изображений в диапазоне [-1, 1].

4. Создание дискриминатора (`build_discriminator`):

– Дискриминатор представляет собой нейронную сеть, которая принимает изображения и классифицирует их на "реальные" (1) или "сгенерированные" (0).

– В данном примере дискриминатор также состоит из полносвязных слоев с функцией активации LeakyReLU.

– Финальный слой дискриминатора использует сигмоидную функцию активации для получения вероятности принадлежности изображения к классу "реальные".

5. Определение функций потерь и оптимизаторов:

– В данном примере используется функция потерь бинарной кросс-энтропии (`BinaryCrossentropy`).

– Оптимизаторы для генератора и дискриминатора – `Adam` с заданным коэффициентом обучения.

6. Обучение GAN (`train_gan`):

– На каждой итерации обучения:

– Генерируется случайный вектор шума из латентного пространства.

– Генератор создает синтетические изображения на основе этого шума.

– Из обучающего набора выбирается случайный батч реальных изображений.

– Собирается батч из реальных и сгенерированных изображений.

– Дискриминатор обучается на этом батче с метками "реальные" и "сгенерированные" соответственно.

– Генератор обучается на сгенерированном шуме с метками "реальные".

– Обучение происходит чередованием обучения дискриминатора и генератора, чтобы они соревновались друг с другом.

7. Обучение GAN:

– GAN собирается из генератора и дискриминатора в последовательную модель `gan`.

– Обучение GAN происходит вызовом метода `compile` с функцией потерь `binary_crossentropy` и оптимизатором `generator_optimizer`.

Обучение GAN (Generative Adversarial Network) представляет собой процесс обучения двух компонентов сети: генератора (Generator) и дискриминатора (Discriminator), взаимодействующих друг с другом в конкурентной игре.

Вначале создается последовательная модель GAN, объединяющая генератор и дискриминатор. Это делается путем последовательного объединения слоев генератора и слоев дискриминатора в единую модель. Это позволяет обращаться к генератору и дискриминатору как к единой сущности и проводить общую оптимизацию в процессе обучения.

 Для обучения GAN определяется функция потерь (loss function), которая определяет, насколько хорошо работает GAN. В случае GAN, функция потерь использует обычно бинарную кросс-энтропию (binary_crossentropy), которая является распространенным выбором для бинарных классификационных задач.

 Также выбирается оптимизатор (optimizer), который отвечает за обновление весов сети в процессе обучения с учетом значения функции потерь. В данном случае, указанный `generator_optimizer` используется для оптимизации параметров генератора.

Перейти на страницу:

Похожие книги

Самоучитель UML
Самоучитель UML

Самоучитель UMLПервое издание.В книге рассматриваются основы UML – унифицированного языка моделирования для описания, визуализации и документирования объектно-ориентированных систем и бизнес-процессов в ходе разработки программных приложений. Подробно описываются базовые понятия UML, необходимые для построения объектно-ориентированной модели системы с использованием графической нотации. Изложение сопровождается примерами разработки отдельных диаграмм, которые необходимы для представления информационной модели системы. Цель книги – помочь программистам освоить новую методологию разработки корпоративных программных приложений для последующего применения полученных знаний с использованием соответствующих CASE-инструментов.

Александр Васильевич Леоненков , Александр Леоненков

Зарубежная компьютерная, околокомпьютерная литература / Программирование / Прочая компьютерная литература / Книги по IT
С компьютером на ты. Самое необходимое
С компьютером на ты. Самое необходимое

Рассказывается о работе в операционной системе Windows (на примере версий XP и 7), текстовом редакторе Word 2010 и других приложениях, необходимых каждому пользователю: архиваторах, антивирусах и программах для просмотра видео и прослушивания музыки (Winamp, QuickTime Pro). Большое внимание уделяется работе в Интернете. Рассказывается о программах для просмотра Web-страниц, об электронной почте, а также о различных полезных приложениях для работы в сети — менеджерах закачек файлов, ICQ, Windows Live Messenger, MSN и многих других. Во втором издании рассмотрена новая ОС — Windows 7, а также последние версии приложений для пользователей.Для начинающих пользователей ПК.

Андрей Александрович Егоров , Андрей Егоров

Зарубежная компьютерная, околокомпьютерная литература / Прочая компьютерная литература / Книги по IT
Omert@. Руководство по компьютерной безопасности и защите информации для Больших Боссов
Omert@. Руководство по компьютерной безопасности и защите информации для Больших Боссов

Увы, друг мой, защита твоей информации - или хотя бы четкое понимание того, что это такое и как подобная защита должна строиться - это Твое Личное Дело! Не Cosa Nostra (хотя твои проблемы могут стать и Нашим Делом тоже), а Cosa Roba - Твое Дело!  Я знаю, что ты солидный человек, который привык платить, чтобы за него решали проблемы. Однако есть проблемы, которые за тебя никто не решит, - даже за очень большие деньги. Например, заниматься любовью со своей женой должен ты сам. Но кто тебе сказал, что защита твоей информации - это менее интимное дело, и его можно поручить постороннему?  Первая книга по безопасности для Менеджеров, а не для ботаников-компьютерщиков, информации от широко неизвестного благодаря своей репутации эксперта международного класса. Только благодаря ей Большой Босс сможет понять, каким образом он сможет чувствовать себя хотя бы в относительной безопасности!  Ты должен сам знать, что такое безопасность информации! Ни один нанятый специалист не решит это за тебя!  Если ты нанимаешь студента-компьютерщика за двести баксов в месяц и совершенно серьезно считаешь его специалистом по информационной безопасности, - не понятно, как ты вообще смог стать менеджером подобного уровня.

Алекс Экслер , Карл Шкафиц

Зарубежная компьютерная, околокомпьютерная литература / Прочая компьютерная литература / Книги по IT