Читаем Нейросети полностью

Одной из проблем РНС является проблема исчезающих и взрывающихся градиентов, которые могут возникать, когда градиенты в сети становятся слишком маленькими или слишком большими. Это может затруднить обучение глубоких РНС с большим количеством слоев. Для решения этой проблемы было разработано несколько разновидностей РНС, таких как сети с долговременной кратковременной памятью (LSTM) и управляемые рекуррентные блоки (GRU), которые предназначены для лучшей обработки долгосрочных зависимостей в последовательных данных.

РНС находят широкое применение, в частности, в обработке естественного языка, распознавании речи, создании подписей к изображениям, прогнозировании цен на акции. Они особенно хорошо подходят для задач, в которых используются последовательные или временные данные, где выход зависит не только от текущего входа, но и от предыдущих входов.

Конволюционные нейронные сети

Конволюционные нейронные сети (КНС) – это тип искусственных нейронных сетей, предназначенных для обработки данных с решетчатой структурой, таких как изображения или видео. Они особенно эффективны для таких задач, как классификация изображений, обнаружение объектов и сегментация изображений.

Архитектура типичной CNN состоит из входного слоя, нескольких сверточных слоев, нескольких объединяющих слоев и одного или нескольких полностью связанных слоев. В сверточных слоях сеть применяет набор фильтров или ядер к входному изображению для извлечения особенностей. Каждый фильтр выполняет операцию свертки, которая заключается в умножении значений в небольшом окне входного изображения на веса фильтра и последующем суммировании результатов. Этот процесс повторяется для всех окон входного изображения, в результате чего получается новая карта признаков.

Слои объединения используются для уменьшения размерности карт признаков путем их понижающей выборки. Это помогает сделать сеть более устойчивой к изменениям входных данных, таким как изменения положения или ориентации. Наиболее распространенной операцией объединения является максимальное объединение, которое выбирает максимальное значение в каждом окне карты признаков.

Полностью связанные слои используются для получения конечного результата работы сети, например, предсказания или классификации. Эти слои аналогичны слоям в нейронной сети с прямой передачей и используются для объединения признаков, извлеченных конволюционным и объединяющим слоями, в единый вектор.

CNN обычно обучаются с помощью методов контролируемого обучения, при котором сети предъявляется набор помеченных примеров, а веса связей настраиваются так, чтобы минимизировать разницу между предсказанным выходом и фактическим выходом. Этот процесс обычно выполняется с помощью обратного распространения, которое включает в себя вычисление градиента функции потерь относительно весов, а затем обновление весов с помощью алгоритма оптимизации.

Одним из основных преимуществ CNN является их способность автоматически узнавать особенности из входных данных, без необходимости ручной разработки особенностей. Это делает их хорошо подходящими для таких задач, как распознавание изображений, где визуальные признаки, необходимые для классификации, трудно определить вручную. Кроме того, CNN обладают высокой параллелизуемостью и могут обучаться на больших наборах данных с помощью графических процессоров, что делает их хорошо подходящими для крупномасштабных приложений машинного обучения.

Глубокие нейронные сети

Глубокие нейронные сети (ГНС) – это тип искусственных нейронных сетей, которые имеют несколько слоев нейронов между входным и выходным слоями. Эти слои обычно называются скрытыми слоями, а количество скрытых слоев в ГНС может варьироваться от нескольких до сотен или даже тысяч, в зависимости от сложности решаемой задачи.

Архитектура типичной ГНК состоит из входного слоя, одного или нескольких скрытых слоев и выходного слоя. Каждый слой состоит из набора нейронов, которые соединены с нейронами предыдущего и следующего слоев набором весов. В процессе обучения веса настраиваются таким образом, чтобы минимизировать разницу между прогнозируемым выходом сети и фактическим выходом.

Для обучения ГНС обычно используется метод обратного распространения, который предполагает вычисление градиента функции потерь относительно весов и последующее обновление весов с помощью алгоритма оптимизации, например, стохастического градиентного спуска. Использование нескольких скрытых слоев позволяет сети обучаться все более абстрактным представлениям входных данных, что может быть полезно для таких задач, как распознавание изображений, распознавание речи и обработка естественного языка.

Перейти на страницу:

Похожие книги

Основы информатики: Учебник для вузов
Основы информатики: Учебник для вузов

Учебник состоит из двух разделов: теоретического и практического. В теоретической части учебника изложены основы современной информатики как комплексной научно-технической дисциплины, включающей изучение структуры и общих свойств информации и информационных процессов, общих принципов построения вычислительных устройств, рассмотрены вопросы организации и функционирования информационно-вычислительных сетей, компьютерной безопасности, представлены ключевые понятия алгоритмизации и программирования, баз данных и СУБД. Для контроля полученных теоретических знаний предлагаются вопросы для самопроверки и тесты. Практическая часть освещает алгоритмы основных действий при работе с текстовым процессором Microsoft Word, табличным редактором Microsoft Excel, программой для создания презентаций Microsoft Power Point, программами-архиваторами и антивирусными программами. В качестве закрепления пройденного практического курса в конце каждого раздела предлагается выполнить самостоятельную работу.

Вадим Васильевич Лысенко , Лариса Александровна Малинина , Максим Анатольевич Беляев

Зарубежная компьютерная, околокомпьютерная литература / Прочая компьютерная литература / Книги по IT
Фотоприколы с помощью Photoshop
Фотоприколы с помощью Photoshop

Книга в доступной и юмористической форме раскроет перед вами волшебный мир компьютерной графики. В первой (теоретической) части вы познакомитесь с основными понятиями цифровой графики, интерфейсом программы Photoshop и принципами ее работы. Вторая (практическая) часть, представленная в виде забавных примеров, весело и непринужденно поможет вам научиться выполнять различные трюки с фотографиями. Вы узнаете, как изменить внешний вид президента, сделать утюг водоплавающим, заставить футболиста летать и многое другое, а заодно изучите богатую палитру инструментов Photoshop. С этой веселой книгой, снабженной забавными иллюстрациями, проблемы с Photoshop покажутся вам просто смешными.

Геннадий Геннадьевич Кондратьев , Юрий Анатольевич Гурский

Программирование, программы, базы данных / Прочая компьютерная литература / Книги по IT