Читаем Нейротон. Занимательные истории о нервном импульсе полностью

К концу 1990-х годов Хаймбург начал проводить собственные эксперименты. Он сжимал искусственные клеточные мембраны, чтобы увидеть, как те будут реагировать на механические волны. В результате было открыто кое-что важное: липиды мембраны обычно находятся в жидком состоянии, их молекулы повёрнуты случайным образом, но они близки к тому, что физики называют фазовым переходом. Достаточно чуть-чуть сжать мембрану, и липиды сконденсируются в высокоупорядоченную жидкокристаллическую структуру.

Проведя эксперименты, Хаймбург стал утверждать, что нервный импульс – это механическая волна, которая идёт по мембране. Продвигаясь, она сжимает липиды мембраны так, что они образуют жидкий кристалл, при этом выделяется небольшое количество тепла, так же как при замерзании воды. Затем, когда волна прошла, через несколько тысячных долей секунды мембрана возвращается в жидкое состояние и при этом поглощается тепло. Быстрый переход в жидкокристаллическую форму и обратно сопровождается расширением мембраны, что и наблюдали Тасаки с Ивасой, освещая лазером крупинку платины.

Хаймбургом было сделано ещё одно оригинальное предположение – механическая волна и фазовый переход могут быть связаны со скачком напряжения, происходящим при прохождении импульса. Хаймбург обнаружил, что может перевести мембрану в жидкокристаллическое состояние, просто изменив мембранный потенциал. По его словам, люди изменяли мембранный потенциал на протяжении почти 70 лет, но никто из электрофизиологов никогда не проверял наличие жидкокристаллической структуры. Возможно мембраны представляют собой пьезоэлектрики – материалы, способные преобразовывать физические воздействия в электрические сигналы и наоборот. Это значит, что электрический импульс, идущий по мембране, вызывает механическую волну. Или наоборот, механическая волна, идущая по мембране, вызывает изменение напряжения.

Зачем Хаймбург занялся наблюдением за нервами при анестезии?

На полках у Хаймбурга были книги по физике, а не по биологии. Среди них были и книги Германа Гельмгольца, который в середине 1800-х годов сформулировал важнейшее правило термодинамики, что энергия может переходить в другую форму, но не может быть создана или уничтожена. Напомню, Гельмгольц тоже измерял скорость нервных импульсов. «Я считаю, что обязательно надо читать эти старые тексты, – говорит Хаймбург. – Они отражают постепенное открытие фундаментальных связей между энергией, температурой, давлением, напряжением и фазовыми переходами». Эти принципы лежат в основе представлений Хаймбурга о работе нейронов, представлений физика, пробивающего себе дорогу в чужой (и недружелюбной) научной области.

Он быстро заметил слабые места в популярных объяснениях действия анестезии. Биологи считают, что анестезия выключает нервы, блокируя ионные каналы – проходы в мембране нейрона, которые закрываются и открываются, пропуская ионы натрия или калия. Но поскольку разные анестетики имеют совершенно разную молекулярную структуру, Хаймбург усомнился, что все они связываются с ионными каналами. Это «совершенно нелепое» объяснение, разочарованно говорил он как о чем-то абсолютно очевидном. Тут должно быть что-то «более глубокое и основательное».

Идеи Хаймбурга отчасти сформировались под влиянием старой книги «Исследования наркоза» (Studien ber die Narkose), опубликованной Эрнестом Овертоном (

Ernest Overton) в 1901 г. Описываемый там эксперимент привлёк внимание Хаймбурга. Овертон взял десятки разных анестетиков и каждый из них поместил в колбу, содержащую воду, где сверху был слой оливкового масла. Он потряс каждую колбу, а затем подождал, пока вода и масло снова разделятся. Далее для каждого анестетика он определил, сколько оказалось в воде, а сколько в масле. Чем более сильным действием на животных обладал анестетик, тем больше его оказывалось в масле. Такой поразительный результат был позже подтверждён для новых анестетиков. Оливковое масло и клеточные мембраны состоят из похожих молекул, которые называются «жирные кислоты».1

В начале 1950-х годов датчанин Йенс Скоу (Jens Christian Skou

) изучал механизм действия анестетиков. Он также заметил, что действие анестетика связано с его способностью растворяться в липидном слое клеточной мембраны и блокировать натриевые каналы. Сначала Скоу предположил, что канал является белковой молекулой и его перекрытие в нейронах приводит к тому, что нервные клетки теряют способность к возбуждению, а это приводит к анестезии.

Продолжение исследования этого вопроса привело его к нобелевской премии за открытие в 1957 году такой разновидности АТФ-азы, которая активируется катионами натрия и калия. Так был обнаружен первый ионный насос – фермент, который создаёт прямой перенос ионов через клеточную мембрану.

Кстати, Чарльз Овертон, первым в 1902 году наблюдавший свойства анестетиков в масле тоже вошёл в историю, он высказал идею, что клеточные мембраны состоят из тонкого слоя фосфолипидов.


Перейти на страницу:

Похожие книги

Происхождение мозга
Происхождение мозга

Описаны принципы строения и физиологии мозга животных. На основе морфофункционального анализа реконструированы основные этапы эволюции нервной системы. Сформулированы причины, механизмы и условия появления нервных клеток, простых нервных сетей и нервных систем беспозвоночных. Представлена эволюционная теория переходных сред как основа для разработки нейробиологических моделей происхождения хордовых, первичноводных позвоночных, амфибий, рептилий, птиц и млекопитающих. Изложены причины возникновения нервных систем различных архетипов и их роль в определении стратегий поведения животных. Приведены примеры использования нейробиологических законов для реконструкции путей эволюции позвоночных и беспозвоночных животных, а также основные принципы адаптивной эволюции нервной системы и поведения.Монография предназначена для зоологов, психологов, студентов биологических специальностей и всех, кто интересуется проблемами эволюции нервной системы и поведения животных.

Сергей Вячеславович Савельев , Сергей Савельев

Биология, биофизика, биохимия / Зоология / Биология / Образование и наука
Энергия, секс, самоубийство. Митохондрии и смысл жизни
Энергия, секс, самоубийство. Митохондрии и смысл жизни

Испокон веков люди обращали взоры к звездам и размышляли, почему мы здесь и одни ли мы во Вселенной. Нам свойственно задумываться о том, почему существуют растения и животные, откуда мы пришли, кто были наши предки и что ждет нас впереди. Пусть ответ на главный вопрос жизни, Вселенной и вообще всего не 42, как утверждал когда-то Дуглас Адамс, но он не менее краток и загадочен — митохондрии.Они показывают нам, как возникла жизнь на нашей планете. Они объясняют, почему бактерии так долго царили на ней и почему эволюция, скорее всего, не поднялась выше уровня бактериальной слизи нигде во Вселенной. Они позволяют понять, как возникли первые сложные клетки и как земная жизнь взошла по лестнице восходящей сложности к вершинам славы. Они показывают нам, почему возникли теплокровные существа, стряхнувшие оковы окружающей среды; почему существуют мужчины и женщины, почему мы влюбляемся и заводим детей. Они говорят нам, почему наши дни в этом мире сочтены, почему мы стареем и умираем. Они могут подсказать нам лучший способ провести закатные годы жизни, избежав старости как обузы и проклятия. Может быть, митохондрии и не объясняют смысл жизни, но, по крайней мере, показывают, что она собой представляет. А разве можно понять смысл жизни, не зная, как она устроена?16+

Ник Лэйн

Биология, биофизика, биохимия / Биология / Образование и наука
Будущее мозга. Как мы изменимся в ближайшие несколько лет
Будущее мозга. Как мы изменимся в ближайшие несколько лет

Мы разговариваем друг с другом в любой точке мира, строим марсоходы и примеряем виртуальную одежду. Сегодня технологии настолько невероятны, что уже не удивляют. Но неужели это все, на что способно человечество?Книга всемирно известного нейробиолога Факундо Манеса и профессора социолингвистики Матео Ниро раскроет настоящие и будущие возможности нашего мозга. Авторы расскажут о том, что человек смог достичь в нейронауке и зачем это нужно обществу.Вы узнаете, как современные технологии влияют на наш ум и с помощью чего можно будет победить тяжелые заболевания мозга. Какие существуют невероятные нейротехнологии и почему искусственному интеллекту еще далеко до превосходства над человеком. Ученые помогут понять, как именно работает наш мозг, и чего еще мы не знаем о себе.

Матео Ниро , Факундо Манес

Биология, биофизика, биохимия / Научно-популярная литература / Образование и наука