Читаем Нейротон. Занимательные истории о нервном импульсе полностью

Справится ли с этой задачей простой осмос? Ответ Ходжкина и Хаксли – нет! И тут на сцену выходят «молекулы помощники» – ионные насосы. Белковые молекулы, которые выкачивают из клетки ионы натрия и закачивают ионы калия. Причём делают это чрезвычайно быстро, судя по временному графику нервного импульса. Хотя, можно предположить, что ионные концентрации восстанавливаются за счёт их общего количества во внутри– и внеклеточном пространстве, а поддерживаются насосами.

Насосы

Мембранный электрический потенциал генерируется с помощью поддержания концентрации ионов, присутствующих в физиологических жидкостях организма и внутриклеточной среды.

Каждый потенциал действия оставляет клетку с бо́льшим, чем следовало бы быть, количеством натрия внутри и с бо́льшим количеством калия снаружи. Восстановить исходный баланс должен был бы осмос. Но нервные импульсы несутся по аксону один за другим с такой частотой, что медленный осмос не справится. И не забываем, что через мембраны ионы калия и натрия надо перемещать против градиента концентрации и электрохимического градиента. Ходжкин предположил, что этот дисбаланс исправляется особым белком, который транспортирует избыточные ионы натрия из клетки, а ионы калия – в клетку. В результате чего исходные градиенты концентраций натрия и калия восстанавливаются. [8]

1950-х годах Ходжкин обнаружил, что при возбуждении нерва расходуется АТФ, а также, что перенос катиона натрия из клетки замедляется, если подавить синтез АТФ. Начало развиваться представление о ферменте АТФазе, которую в тот момент считали ответственной за биосинтез АТФ.

Каждый потенциал действия оставляет клетку с бо́льшим, чем следовало бы быть, количеством натрия внутри и с бо́льшим количеством калия снаружи. Восстановить исходный баланс должен был бы осмос. Но нервные импульсы несутся по аксону один за другим с такой частотой, что медленный осмос не справится. И не забываем, что через мембраны ионы калия и натрия надо перемещать против градиента концентрации и электрохимического градиента. Ходжкин предположил, что этот дисбаланс исправляется особым белком, который транспортирует избыточные ионы натрия из клетки, а ионы калия – в клетку. В результате чего исходные градиенты концентраций натрия и калия восстанавливаются. [8]

В 1950-х годах Ходжкин обнаружил, что при возбуждении нерва расходуется АТФ, а также, что перенос катиона натрия из клетки замедляется, если подавить синтез АТФ. Начало развиваться представление о ферменте АТФазе, которую в тот момент считали ответственной за биосинтез АТФ.

Биохимия нейрона

Напомню, что белки – это полимеры – молекулярные «бусы», состоящие из «бусин» -мономерных аминокислот. Каждая аминокислота имеет: аминную группу, карбоксильную группу и радикал.


Всего в состав белков входят 20 типов аминокислот, которые различаются лишь радикалами. Самый простой из радикалов водород даёт нам аминокислоту, которая называется глицин.

Полимеризация аминокислот с образованием белка происходит за счёт связывания COOH-группы предыдущей аминокислоты с NH2 следующей (такая связь называется пептидной).

В результате появляются линейные цепочки, состоящие из сотен аминокислот (100 аминокислот уже белок, меньше ста ещё пептид).

Итоговая аминокислотная цепь – это первичная структура белка. Радикалы не принимают участия в её формировании. Средняя длина белка 300—700 аминокислот. У каждого белка своя уникальная структура, свой набор и порядок аминокислот.


Рисунок 38. Белок


Следующий этап – формирование вторичной структуры белка. Она происходит за счёт присутствия довольно больших зарядов внутри аминокислот: положительного на аминной группе и отрицательного на карбоксильной.

Под влиянием этих зарядов первичная структура начинает сворачиваться. Самый известный способ свёртывания – это спираль. На каждом витке такой спирали примерно три аминокислоты. Радикалы при этом вновь не участвуют.

На третьем этапе спираль сворачивается в белковый клубок. Его образование происходит за счёт взаимодействия радикалов. Они же все могут быть разными и положительными, и отрицательными. Именно в таком состоянии белок становится молекулярной белковой машиной. Теперь он способен работать, например, схватить какую-нибудь молекулу и что-нибудь с ней сделать.

Как это происходит. Благодаря своей химической структуре белок способен производить захват молекулы-мишени (лиганда), для каждого белка мишень своя. Белок подстраивается под свою мишень по принципу ключ-замок. После этого он способен выполнять с лигандом те или иные действия.

По типу операций с лигандом белки подразделяются на:

Белки-ферменты

транспортные белки


белки-каналы (насосы)

двигательные, защитные, строительные и др.

Как работает расщепляющий пищевой белок-фермент.

Захватить лиганд.

Разорвать его.

Отпустить.


А бывает наоборот – синтез новых веществ:

Захватить два лиганда.

Соединить их.

Отпустить.


Транспортный белок, например, гемоглобин работает так. Схватил кислород, перенёс его, отпустил и опять в лёгкие за новым кислородом.

В организме работает около 5000 групп ферментов.

Перейти на страницу:

Похожие книги

Происхождение мозга
Происхождение мозга

Описаны принципы строения и физиологии мозга животных. На основе морфофункционального анализа реконструированы основные этапы эволюции нервной системы. Сформулированы причины, механизмы и условия появления нервных клеток, простых нервных сетей и нервных систем беспозвоночных. Представлена эволюционная теория переходных сред как основа для разработки нейробиологических моделей происхождения хордовых, первичноводных позвоночных, амфибий, рептилий, птиц и млекопитающих. Изложены причины возникновения нервных систем различных архетипов и их роль в определении стратегий поведения животных. Приведены примеры использования нейробиологических законов для реконструкции путей эволюции позвоночных и беспозвоночных животных, а также основные принципы адаптивной эволюции нервной системы и поведения.Монография предназначена для зоологов, психологов, студентов биологических специальностей и всех, кто интересуется проблемами эволюции нервной системы и поведения животных.

Сергей Вячеславович Савельев , Сергей Савельев

Биология, биофизика, биохимия / Зоология / Биология / Образование и наука
Энергия, секс, самоубийство. Митохондрии и смысл жизни
Энергия, секс, самоубийство. Митохондрии и смысл жизни

Испокон веков люди обращали взоры к звездам и размышляли, почему мы здесь и одни ли мы во Вселенной. Нам свойственно задумываться о том, почему существуют растения и животные, откуда мы пришли, кто были наши предки и что ждет нас впереди. Пусть ответ на главный вопрос жизни, Вселенной и вообще всего не 42, как утверждал когда-то Дуглас Адамс, но он не менее краток и загадочен — митохондрии.Они показывают нам, как возникла жизнь на нашей планете. Они объясняют, почему бактерии так долго царили на ней и почему эволюция, скорее всего, не поднялась выше уровня бактериальной слизи нигде во Вселенной. Они позволяют понять, как возникли первые сложные клетки и как земная жизнь взошла по лестнице восходящей сложности к вершинам славы. Они показывают нам, почему возникли теплокровные существа, стряхнувшие оковы окружающей среды; почему существуют мужчины и женщины, почему мы влюбляемся и заводим детей. Они говорят нам, почему наши дни в этом мире сочтены, почему мы стареем и умираем. Они могут подсказать нам лучший способ провести закатные годы жизни, избежав старости как обузы и проклятия. Может быть, митохондрии и не объясняют смысл жизни, но, по крайней мере, показывают, что она собой представляет. А разве можно понять смысл жизни, не зная, как она устроена?16+

Ник Лэйн

Биология, биофизика, биохимия / Биология / Образование и наука
Будущее мозга. Как мы изменимся в ближайшие несколько лет
Будущее мозга. Как мы изменимся в ближайшие несколько лет

Мы разговариваем друг с другом в любой точке мира, строим марсоходы и примеряем виртуальную одежду. Сегодня технологии настолько невероятны, что уже не удивляют. Но неужели это все, на что способно человечество?Книга всемирно известного нейробиолога Факундо Манеса и профессора социолингвистики Матео Ниро раскроет настоящие и будущие возможности нашего мозга. Авторы расскажут о том, что человек смог достичь в нейронауке и зачем это нужно обществу.Вы узнаете, как современные технологии влияют на наш ум и с помощью чего можно будет победить тяжелые заболевания мозга. Какие существуют невероятные нейротехнологии и почему искусственному интеллекту еще далеко до превосходства над человеком. Ученые помогут понять, как именно работает наш мозг, и чего еще мы не знаем о себе.

Матео Ниро , Факундо Манес

Биология, биофизика, биохимия / Научно-популярная литература / Образование и наука