Более тысячи из известных пульсаров были открыты при самом большом на сегодняшний день многолучевом обзоре галактической плоскости радиотелескопом Parkes,
где все еще на посту “старослужащая” – австралийская тарелка. Когда в 1997 году Parkes начал сканирование галактической плоскости, были известны только чуть больше семисот пульсаров, а всего год спустя, 5 ноября 1998 года, в копилку астрономов добавился тысячный пульсар. Это известие попало на первые страницы многих мировых газет. Обзор продолжался до марта 2000 года и возобновился в декабре 2001-го. Невероятный успех проекту обеспечил достаточно специальный прибор – многолучевой приемник, установленный в фокальной области тарелки Parkes в 1996 году. Этот приемник использовался и при обзоре промежуточных галактических широт, выполненном для Технологического университета Суинберна, и во многих других случаях. В общей сложности на счету Parkes более половины всех известных пульсаров, включая знаменитый и до сих пор уникальный двойной пульсар – единственную известную двойную систему из двух радиопульсаров, о которой упоминалось в главе 2. Многолучевой приемник нашел и самый первый быстрый радиовсплеск, или FRB (FastRadio Burst), так называемый “всплеск Лоримера”. Он входит в новый класс чрезвычайно мощных и коротких вспышек в глубоком космосе, происхождение которых до сих пор неизвестно (более подробно о FRB будет рассказано в главе 9).Первоначально многолучевой приемник разрабатывался для поиска тусклых галактик, идентифицируемых по характерной спектральной линии атомов водорода длиной 21 сантиметр. Именно на этой длине волны, соответствующей 1420 МГц и попадающей в микроволновую область спектра, излучение газа атомов водорода проникает сквозь облака пыли, непрозрачные для видимого света. Но астрономы быстро поняли, что многолучевой приемник благодаря сильно увеличенному полю зрения радиотелескопа можно использовать для поиска пульсаров.
Когда Джон Саркисян, руководящий на месте работой телескопа Parkes,
показал мне многолучевой приемник, моей первой мыслью было: “Вот это да! Что за бочка!” В самом деле, будучи около метра в поперечнике и полтора метра в высоту, он выглядел как металлическая бочка, внутри которой помещается шестиугольная конструкция из тринадцати маленьких цилиндров. Это криостат, температура внутри которого во время работы составляет 20 кельвинов. Такая близкая к абсолютному нулю температура позволяетустранить шумы и повышает чувствительность прибора. Для сравнения: средняя температура пустого пространства между небесными телами порядка 2,73 кельвина (или -270,42 градуса Цельсия). Когда я приехала в обсерваторию Parkes, то увидела многолучевой приемник хранившимся в крошечном строении вблизи телескопа. Астрономы заменили его однолучевым приемником, поскольку Parkes тогда отслеживал покидающий Солнечную систему космический зонд “Вояджер-2”. Для наблюдения пульсаров его позднее вернули на место, подвесив высоко над центром антенны.Один из разработчиков многолучевого приемника – опытный исследователь пульсаров астроном Эндрю Лайн. Я встретилась с ним в июле 2019 года в обсерватории Джодрелл-Бэнк, всего в часе езды от Манчестера. Был солнечный день, пятница, и астрономы устроили пикник прямо рядом с 76-метровым телескопом Lovell.
Студенты, преподаватели и служащие сидели на асфальте рядом с возвышающимся над ними, залитым солнцем огромным телескопом. В сравнении с Parkes, где все, от диспетчерской башни до самой тарелки-отражателя, заставляет ностальгически вспомнить шестидесятые годы, Lovell выглядит гораздо современнее. Все телефоны пришлось перевести в “режим полета”. Как и рядом с Parkes, радиомолчание – непреложное правило, хотя выполнить его не так-то легко, учитывая близость к Манчестеру. Я последовала за Лайном в стоящее неподалеку здание, выглядящее как летний домик. Здесь рабочие кабинеты астрономов. За свою длинную карьеру Лайну удалось достичь многого, но, по его словам, в число результатов, которыми он гордится больше всего, входит его роль в создании многолучевого приемника и масштабный обзор Parkes.