Читаем Неорационализм полностью

Итак, с помощью так или иначе определенных весовых коэффициентов можно поправить механическую меру свободы системы — «число степеней свободы». Достаточно ли это­го, чтобы она стала пригодной для системы «общество»? Для того, чтобы показать, что нет, и выяснить, как ее еще нужно поправлять, рассмотрим очень важное в механике и имеющее отношение к предмету, понятие «связи». Оно имеет то отношение к предмету, что наличие связей, которые есть ни что иное, как ограничения, накладываемые на возмож­ность изменения параметров системы, влияет на меру сво­боды системы, а именно — сокращает ее. В частности, мож­но завязать систему так, что никакие изменения параметров в ней будут вообще невозможны и тогда число степеней свободы ее будет равно нулю.



В механике связи подразделяются на абсолютные, или абсолютно-жесткие, и на гибкие, или упругие. Последние отличаются от абсолютных тем, что они допускают перемещение в том направлении, в котором они его и ограничива­ют, но перемещение это требует усилия, ве­личина которого зависит от величины перемещения. Абсолютные связи являются част­ным случаем упругих, когда потребное усилие, необходимое для минимального перемещения, бесконечно. Разумеется, что в реальной действительности нет ничего абсолютною, в том числе — абсолютных связей. Но как уже было сказано (глава 1), любое наше номинал-определение описывает лишь пустое множество. В этом смысле любая упругая связь при задании точного закона соответствия между си­лой и перемещением описывает также лишь пустое мно­жество. При расширении же номинал-понятия за счет до­пусков абсолютная связь становится весьма важным и со­держательным понятием в механике даже без указания величин допусков (например, при битье лбом об стенку, последнюю вполне можно рассматривать как абсолютное препятствие, хотя в принципе можно и повредить ее).



Понятие числа степеней свобод введено для механических систем только с абсолютными связями. Так что, даже при переходе к механическим системам, в которых помимо абсолютных, есть упругие связи, нужно было бы уже расширять понятие меры свободы системы. При переходе же к системе «общество» нужно учесть, что понятия абсолютных и упругих связей решительно недостаточно для описания ка­чественного разнообразия связей в обществе. Я хочу дать лишь один пример: ограничение, обусловленное вероятностью каких-то негативных последствий при попытке реализовать соответствующую свободу. Например, опасность гулять ве­чером по улицам города в ситуации сильно развитой прес­тупности (скажем, в Нью-Йорке). Свобода, о которой идет речь, достаточно существенна, ограничение не абсолютное и как упругое его нельзя описывать, но можно описать как вероятностное.



Возникает вопрос, как отразить в мере свободы общества наличие неабсолютных, да к тому же еще разной природы (упругих, вероятностных и прочих) связей? Это можно сде­лать с помощью коэффициентов аналогичных весовым. При этом, мера свободы примет вид:



S=∑fi∙∏Kij



где Kij - коэффициенты, учитывающие характер j-той связи, аложенной на изменение i-того параметра. (В случае, если связь обуславливает зависимость между возможными изменениями нескольких параметров, всегда можно принять пра­вило, по которому все параметры в этой связи, кроме одного, будут полагаться независимыми, и тогда связь будет отно­ситься только к этому последнему).



Коэффициенты Кijявляются функционалами от функций, описывающих саму связь. Скажем, в случае упругой связи существует зависимость между возможным изменени­ем параметра и усилием, которое необходимо для этого приложить. Например, ∆ɑi—изменение i-того параметра сис­темы, Fj—усилие, необходимое для достижения этого изменения в соответствии с j-той связью.



∆ɑi =ȹij(Fj) — функция, описывающая саму связь.



Соответствующий этой связи коэффициент Kij = Kij(ȹij).



Характер функции ȹij определяется характером самой упругой связи. Это может быть функция линейная, нелинейная, непрерывная, разрывная и т. д. В частности, при опре­деленном усилии связь может вообще исчезать (разрушаться или освобождаться), а до этого быть абсолютной и т. п.



Функционал Kij(ȹij) зависит от нашей внутренней природы или от того, как мы относимся к тем или иным ограничениям на данную свободу. Именно, благодаря тому, что он отражает наше отношение к различным ограничениям на свободу (осознанное или нет) оказывается принципиально возможным учесть (соизмерить) в одной мере связи раз­личной физической природы, как то упругие, вероятностные и любые другие (для вероятностных, например, аргументом функционала Kij будет не ȹij, а функции, описывающие вероятность неприятного результата с учетом степени самой неприятности.).



Перейти на страницу:

Похожие книги

Молодой Маркс
Молодой Маркс

Удостоена Государственной премии СССР за 1983 год в составе цикла исследований формирования и развития философского учения К. Маркса.* * *Книга доктора философских наук Н.И. Лапина знакомит читателя с жизнью и творчеством молодого Маркса, рассказывает о развитии его мировоззрения от идеализма к материализму и от революционного демократизма к коммунизму. Раскрывая сложную духовную эволюцию Маркса, автор показывает, что основным ее стимулом были связь теоретических взглядов мыслителя с политической практикой, соединение критики старого мира с борьбой за его переустройство. В этой связи освещаются и вопросы идейной борьбы вокруг наследия молодого Маркса.Третье издание книги (второе выходило в 1976 г. и удостоено Государственной премии СССР) дополнено материалами, учитывающими новые публикации произведений основоположников марксизма.Книга рассчитана на всех, кто изучает марксистско-ленинскую философию.

Николай Иванович Лапин

Философия