Читаем Неоткрытые миры полностью

— …мюоны могут достигать поверхности Земли. То есть мы все живём в потоке мюонов, летящих сверху. Исследователи пробуют использовать этот поток для просвечивания египетских пирамид и поиска там пустот, в которых могут размещаться гробницы фараонов.

— Да, это лучше, чем лопатой махать! — согласилась Галатея.

— Частица тау живёт в миллионы раз меньше, чем мюон, зато тяжелее электрона в три с половиной тысячи раз. Этим трём лептонам соответствуют три вида нейтрино. Все они стабильны. Нестабильный мюон любит распадаться на электрон и два вида нейтрино — мюонное и электронное, а частица тау может распасться на мюон, мюонное нейтрино и тау-нейтрино. Группа из шести лептонов дополняется шестью соответствующими античастицами.



Вторая группа элементарных частиц, самая загадочная — кварки. Это те самые внутренние уплотнения, найденные в протоне.

— Найденные в результате жестокого обращения с элементарными частицами, — отметила Галатея.

— В свободном состоянии никто кварки не наблюдал, они могут существовать только связанными друг с другом.

— Какая дружба! — снова не удержалась от комментария Галатея.

— Как и лептонов, кварков тоже шесть плюс столько же антикварков. Шесть кварков называют так: «нижний», «верхний», «прелестный», «очарованный», «странный» и «истинный». Самый лёгкий — «верхний кварк», всего лишь в несколько раз превосходит электрон по массе, зато самый тяжёлый — «истинный кварк» — в сотни тысяч раз тяжелее электрона.

— «Истинный» и «очарованный»! — восхищённо повторила Галатея, — Я уверена, что состою только из самых прелестных кварков!

— Соединения кварков называются адронами. Адронов очень много, но самые известные из них — протон и нейтрон, каждый из которых состоит из трёх кварков. Мезоны — это тоже адроны, возникшие при соединении двух кварков, но могут существовать адроны из четырёх и пяти кварков. Если принять заряд электрона за единицу, то все кварки имеют электрические заряды 1/3 и 2/3, только разного знака. Так как в природе не наблюдается элементарных частиц с таким дробным зарядом, то кварки должны соединяться таким образом, чтобы итоговая частица имела целый заряд (как у электрона) или была нейтральна.

— Какая избирательная у них дружба… — задумалась Галатея. — Значит, два кварка с электрическим зарядом в 2/3 никогда не смогут соединиться? Как это грустно! Вдруг они нравятся друг другу?

— В многочисленных столкновениях частиц в ускорителях рождается множество новых частичек, и некоторые из них являются просто возбуждённым состоянием какого-нибудь адрона, например протона. Но какие бы экзотические частицы не возникали, электрический заряд всегда сохраняется: суммарный заряд множества частиц, возникших при соударении, точно равен заряду частиц, которые столкнулись. Это правило называется законом сохранения электрического заряда. Кроме электрического заряда, кварки имеют такую характеристику, как «цвет» — «красный», «зелёный» и «синий», — и тоже подчиняются своеобразным законам сохранения: например, протоны и нейтроны — это бесцветные частицы, которые должны быть образованы кварками трёх разных цветов, которые в сумме дают белый цвет.

— Неправильно, я наверняка состою из цветных протонов, — хмыкнула Галатея.

— Очень интересным классом элементарных частиц оказались кванты поля. Один из них — фотон, отвечающий за электромагнитные взаимодействия, хорошо изучен. Но во Вселенной известно четыре фундаментальных взаимодействия. Учёные очень давно пытались объединить их. Например, Эйнштейн всю вторую половину своей жизни стремился слить гравитацию и электромагнитные взаимодействия в рамках единой теории, но ему это не удалось. А ведь он ещё не трогал ядерные и слабые взаимодействия! Современные физики пошли иным путём, отставив в сторону гравитацию и пытаясь объединить три других взаимодействия. Этот путь оказался успешнее: в 1967 году Стивену Вайнбергу, Шелдону Глэшоу и Абдус Саламу удалось объединить электрические и слабые взаимодействия. Эта теория получила общее признание, когда все элементарные частицы, предсказанные ею, были открыты. В 1973 году в единую теорию были включены сильные взаимодействия. Эта единая теория трёх фундаментальных взаимодействий и стала основой Стандартной теории, согласно которой переносчиками слабого взаимодействия стали бозоны трёх типов, а за сильное взаимодействие стали отвечать глюоны — восемь нейтральных частиц, не имеющих массы, что сближает их с фотонами.

— Значит, можно создать глюонный фонарик? — спросила Галатея.

Дзинтара задумалась:

— Ну, кварк-глюонные струи удается получить, но вот насчёт фонарика — не знаю…

— Итак, — сказал Андрей, — у нас есть следующее число «атомов» Демокрита: двенадцать лептонов, двенадцать кварков и двенадцать квантов?

Перейти на страницу:

Все книги серии Библиотека вундеркинда

Головоломки профессора Головоломки
Головоломки профессора Головоломки

Что может быть интереснее и увлекательнее загадок, лабиринтов и головоломок? Ведь иногда простая задачка может завести в тупик и лишить спокойствия на целый день. Но тем не менее, поломав голову над такой трудностью и придя в итоге к правильному решению, вы сможете получить потрясающий заряд энергии и уверенности в собственных силах!Головоломки М.А. Гершензона разнообразны и необычны – это рисунки-лабиринты, оптические иллюзии, загадки по принципу оригами, фокусы, шутки, задания на логику и внимательность. Каждый сможет найти интересную для себя задачу и придумать свое оригинальное решение! Примерьте на себя роль веселого художника или всезнайки, придумавшего собственные загадки, найдите несоответствия и ошибки в обычных художественных текстах, поразмышляйте над головоломками и задачами.

Михаил Абрамович Гершензон

Игры, упражнения для детей / Прочая детская литература / Книги Для Детей
Анатомия на пальцах
Анатомия на пальцах

Организм человека изучают три науки — анатомия, физиология и гигиена. Анатомия изучает строение организма. Физиология изучает функции органов и всего организма в целом.Гигиена изучает условия, необходимые для сохранения и укрепления здоровья.Среди трех этих наук самой трудной для понимания, что в школах, что в высших учебных заведениях, традиционно считается анатомия. Бытует мнение, что анатомию можно одолеть только зубрежкой. Зубрить, зубрить и еще раз зубрить! Иначе никак! На самом же деле это не так. Если рассматривать человеческий организм как единую систему, а не набор отдельных органов, то сразу становится ясно, насколько логично он устроен. Нужно не зубрить, а думать — понимать назначение каждого органа, видеть взаимосвязь между органами и системами и т. п. При таком подходе зубрить ничего не придется.

Андрей Левонович Шляхов

Научная литература

Похожие книги

История леса
История леса

Лес часто воспринимают как символ природы, антипод цивилизации: где начинается лес, там заканчивается культура. Однако эта книга представляет читателю совсем иную картину. В любой стране мира, где растет лес, он играет в жизни людей огромную роль, однако отношение к нему может быть различным. В Германии связи между человеком и лесом традиционно очень сильны. Это отражается не только в облике лесов – ухоженных, послушных, пронизанных частой сетью дорожек и указателей. Не менее ярко явлена и обратная сторона – лесом пропитана вся немецкая культура. От знаменитой битвы в Тевтобургском лесу, через сказки и народные песни лес приходит в поэзию, музыку и театр, наполняя немецкий романтизм и вдохновляя экологические движения XX века. Поэтому, чтобы рассказать историю леса, немецкому автору нужно осмелиться объять необъятное и соединить несоединимое – экономику и поэзию, ботанику и политику, археологию и охрану природы.Именно таким путем и идет автор «Истории леса», палеоботаник, профессор Ганноверского университета Хансйорг Кюстер. Его книга рассказывает читателю историю не только леса, но и людей – их отношения к природе, их хозяйства и культуры.

Хансйорг Кюстер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература