Читаем Неприятности с физикой: взлёт теории струн, упадок науки и что за этим следует полностью

Но потребовалось время до 1918 года, чтобы появилась по-настоящему хорошая идея об этой особой унификации. Эта теория, придуманная математиком Германом Вейлем, содержала красивую математическую идею, которой предстояло стать ядром стандартной модели физики частиц. Однако теория потерпела неудачу, поскольку в исходной версии Вейля она давала большие следствия, которые не согласовывались с экспериментом. Одно заключалось в том, что длина объекта должна зависеть от пути его получения. Если вы берёте два метровых бревна, разделяете их, а затем сводите их назад вместе и сравниваете, они должны будут в общем случае иметь разную длину. Это намного радикальнее, чем СТО, которая содержит положение, что метровые брёвна могут на самом деле стать разными по длине, но только когда они двигаются друг относительно друга, а не когда они сравниваются в покое. Это, конечно, не согласуется с нашим ощущением природы.

Эйнштейн не поверил в теорию Вейля, но он восхищался ей, написав Вейлю:

«За исключением [отсутствия] согласия с реальностью это в любом случае великолепное интеллектуальное свершение.»[15]

Ответ Вейля показывает силу математической красоты:

«Отклонение Вами теории тяжело для меня… Но мой собственный разум всё ещё сохраняет веру в неё.»[16]

Конфликт между теми, кто попался на очарование красивой теории, которую они придумали, и более трезвыми умами, настаивающими на связи с реальностью, является историей, которую мы снова и снова будем видеть в более поздних попытках унификации. В этих случаях нет лёгкого решения, поскольку теория может быть фантастически красивой, плодотворной для развития науки и, в то же время, полностью неправильной.

Но даже если первая попытка унификации Вейля провалилась, он придумал современную концепцию объединения, которая в конце концов привела к теории струн. Он был первым, но далеко не последним, кто заявил:

«Я достаточно нахален, чтобы верить, что целые физические явления могут быть выведены из единственного универсального мирового закона величайшей математической простоты.»[17]

Годом позже теории Вейля немецкий физик по имени Теодор Калуца нашёл другой путь для объединения гравитации и электромагнетизма, пересмотрев идею Нордстрёма о скрытой размерности. Но он сделал эту размерность скрученной. Нордстрём нашёл гравитацию, применив теорию электромагнетизма Максвелла к пятимерному миру (в котором четыре измерения пространственные и одно временное). Калуца сделал обратное: он применил ОТО Эйнштейна к пятимерному миру и нашёл электромагнетизм.

Вы можете наглядно представить это новое пространство, добавив маленькую окружность к каждой точке обычного трёхмерного пространства (см. Рис. 4). Эта новая геометрия может быть искривлена новыми способами, поскольку маленькие окружности могут присоединяться к различным точкам по-разному. Тогда в каждой точке оригинального трёхмерного пространства может быть измерено нечто новое. Эта информация, оказывается, выглядит в точности как электрическое и магнитное поля.

Другой удивительный побочный результат заключается в том, что оказывается, что заряд электрона связан с радиусом маленькой окружности. Это не должно быть удивительным: если электрическое поле есть просто проявление геометрии, электрический заряд должен быть тоже проявлением геометрии.

Рисунок 4. Скрученные дополнительные размерности, использованные в теории Калуцы-Кляйна. Слева: сферы расположены в каждой точке обычного трёхмерного пространства, создавая пятимерное пространство. Справа: маленькая окружность расположена на одномерном пространстве. Издалека пространство выглядит одномерным, но при ближайшем рассмотрении видно, что оно двумерно.

И не только это. ОТО описывает динамику пространства-времени в терминах определённых уравнений, называемых уравнениями Эйнштейна. Мне не нужно выписывать их, чтобы описать ключевой факт: эти же самые уравнения могут быть применены к пятимерному миру, который мы только что описали. До тех пор, пока мы наложили одно простое условие, они оказываются правильными уравнениями для описания электрического и магнитного полей и гравитации, объединённых вместе. Таким образом, если эта теория верна, электромагнитное поле является просто другим названием для геометрии пятого измерения.

Идея Калуцы была переоткрыта и разработана дальше в 1920-е шведским физиком Оскаром Кляйном. Его теория на самом деле была красива и неотразима. Гравитация и электромагнетизм были объединены одним ударом, и уравнения Максвелла были объяснены как вытекающие из уравнений Эйнштейна, и всё благодаря простому акту добавления одного измерения к пространству.

Перейти на страницу:

Похожие книги

Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука