Читаем Невидимый современник полностью

Но проход проходу рознь. «Один проход частицы» — это еще ничего не говорит об энергии, которая требуется для вызывания эффекта, так как при проходе частицы через клетку в ней может поглотиться разное количество энергии. Для ответа на этот вопрос Ли решил выяснить зависимость эффекта от типа и жесткости лучей.

Он рассуждал так. Допустим, для умерщвления бактерии нужна сравнительно большая энергия, скажем, энергия нескольких десятков ионизаций. В таком случае достаточную энергию может дать только очень густо ионизирующая частица. Например, альфа-частица, создающая вдоль своего пути сплошную ионизационную «колонну», всегда будет убивать бактерию. А при проходе электронов, образующихся при облучении рентгеновыми и гамма-лучами, ионизации возникают, как правило, на значительном расстоянии друг от друга. Только в самом конце пути, при торможении электрона, образуется очень короткий, густо ионизирующий «хвост», отдающий на единицу своего пути энергию, сравнимую с той, что оставляет альфа-частица. Изредка еще боковые «веточки», так называемые дельта-лучи, создают довольно густую ионизацию. Следовательно, большинство проходов электрона через клетку останутся неэффективными. Поэтому при той же дозе облучения альфа-лучи должны вызывать значительно большую смертность бактерий, чем рентгеновы или гамма-лучи, а нейтроны — занимать промежуточное положение.

Совершенно иная картина должна наблюдаться, если, для того чтобы убить бактерию, достаточно небольшой энергии, скажем, одной ионизации. В таком случае любой проход редко ионизирующего электрона оставит в клетке ровно столько энергии, сколько нужно, а от альфа-частицы клетка получит много ионизаций, большая часть которых окажется избыточной. Но при определении дозы учитывается вся энергия. Поэтому при альфа-облучении, где большая часть энергии тратится «зря», эффект при той же дозе должен быть меньше, чем при использовании рентгеновых лучей.

Опыты показали, что при облучении бактерий наиболее эффективны жесткие (то есть особенно редко ионизирующие) рентгеновы лучи, затем идут мягкие рентгеновы лучи, нейтроны, альфа-частицы. Поэтому можно сказать, что смерть бактерии вызывается небольшой энергией. А более точные расчеты, проведенные Ли, показали, что для этого достаточно энергии одной ионизации.

Видите, сколько опытов понадобилось только для того, чтобы получить какие-то сведения о механизме действия радиации — не на слона, не на кукурузу, а на микроскопическую бактериальную клетку! А ведь многие пытались даже при облучении многоклеточных организмов ограничиваться анализом кривых доза — эффект.


Умерла ли бактерия?


Что значит убить бактерию? Хотя мы только что довольно много говорили о смерти бактерий, вызываемой облучением, ответить на этот вопрос не так просто. Дохлую лошадь или собаку нетрудно отличить от живой. Слишком много признаков помогают нам сделать это. А как отличить живую бактериальную или, скажем, дрожжевую клетку от «дохлой»?

В опытах Ли, о которых мы только что рассказывали, применяли методику, обычную для микробиологических опытов. Определенное число бактерий сеяли на стерильную питательную среду и ставили в термостат, где поддерживается благоприятная для развития температура. Через некоторое время подсчитывали число колоний, которые видны простым глазом. Каждая из них, представляющая собой округлое пятно, состоит из потомков одной клетки. Вычитая из числа посеянных клеток число колоний, получим число погибших клеток.



Но разве погибли те клетки, которые не дали колоний? Ведь мерина или мула не считают дохлыми только потому, что они не дают потомства. А если мы облучим бактерий дозой радиации, вызывающей практически полную потерю способности к образованию колоний, и изучим биохимическими методами, то увидим, что эти клетки почти полностью сохранили способность дышать и усваивать питательные вещества. Чтобы лишить бактерию этих свойств, необходимы гораздо большие дозы. А исследовав бактерий под микроскопом, мы увидим, что они не потеряли даже способности к росту. Клетки вытягиваются в длинные нити.

Можно подойти к вопросу и иначе. Облучить клетки, пересчитать их и поместить в условия, где они могут жить, не размножаясь. Подсчитав число клеток через некоторое время, мы увидим, что их стало меньше. Часть клеток лизировалась, или, попросту говоря, растворилась. Причем это не просто влияние среды. Ведь число контрольных не облучавшихся бактерий не изменилось. Лизис — это, конечно, смерть бактерии, но чтобы его вызвать, нужны колоссальные дозы, совершенно не сравнимые с теми, которые подавляют способность к размножению.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

Логика случая. О природе и происхождении биологической эволюции
Логика случая. О природе и происхождении биологической эволюции

В этой амбициозной книге Евгений Кунин освещает переплетение случайного и закономерного, лежащих в основе самой сути жизни. В попытке достичь более глубокого понимания взаимного влияния случайности и необходимости, двигающих вперед биологическую эволюцию, Кунин сводит воедино новые данные и концепции, намечая при этом дорогу, ведущую за пределы синтетической теории эволюции. Он интерпретирует эволюцию как стохастический процесс, основанный на заранее непредвиденных обстоятельствах, ограниченный необходимостью поддержки клеточной организации и направляемый процессом адаптации. Для поддержки своих выводов он объединяет между собой множество концептуальных идей: сравнительную геномику, проливающую свет на предковые формы; новое понимание шаблонов, способов и непредсказуемости процесса эволюции; достижения в изучении экспрессии генов, распространенности белков и других фенотипических молекулярных характеристик; применение методов статистической физики для изучения генов и геномов и новый взгляд на вероятность самопроизвольного появления жизни, порождаемый современной космологией.Логика случая демонстрирует, что то понимание эволюции, которое было выработано наукой XX века, является устаревшим и неполным, и обрисовывает фундаментально новый подход — вызывающий, иногда противоречивый, но всегда основанный на твердых научных знаниях.

Евгений Викторович Кунин

Биология, биофизика, биохимия / Биология / Образование и наука
Энергия, секс, самоубийство. Митохондрии и смысл жизни
Энергия, секс, самоубийство. Митохондрии и смысл жизни

Испокон веков люди обращали взоры к звездам и размышляли, почему мы здесь и одни ли мы во Вселенной. Нам свойственно задумываться о том, почему существуют растения и животные, откуда мы пришли, кто были наши предки и что ждет нас впереди. Пусть ответ на главный вопрос жизни, Вселенной и вообще всего не 42, как утверждал когда-то Дуглас Адамс, но он не менее краток и загадочен — митохондрии.Они показывают нам, как возникла жизнь на нашей планете. Они объясняют, почему бактерии так долго царили на ней и почему эволюция, скорее всего, не поднялась выше уровня бактериальной слизи нигде во Вселенной. Они позволяют понять, как возникли первые сложные клетки и как земная жизнь взошла по лестнице восходящей сложности к вершинам славы. Они показывают нам, почему возникли теплокровные существа, стряхнувшие оковы окружающей среды; почему существуют мужчины и женщины, почему мы влюбляемся и заводим детей. Они говорят нам, почему наши дни в этом мире сочтены, почему мы стареем и умираем. Они могут подсказать нам лучший способ провести закатные годы жизни, избежав старости как обузы и проклятия. Может быть, митохондрии и не объясняют смысл жизни, но, по крайней мере, показывают, что она собой представляет. А разве можно понять смысл жизни, не зная, как она устроена?16+

Ник Лэйн

Биология, биофизика, биохимия / Биология / Образование и наука