Читаем Невидимый современник полностью

Вы, конечно, помните восторженно-наивные идеи Хольвека, пытавшегося использовать теорию мишени в качестве статистического ультрамикроскопа: облучить клетку, по форме кривой выживания вычислить формальный объем мишени и получить тем самым сведения об объеме управляющего центра живой клетки. Он не учитывал слишком многих обстоятельств, которые влияют на получаемый результат, но в принципе его идея была вполне здравой.

Иногда ионизирующие лучи действительно можно с успехом использовать для статистической ультрамикрометрии. Только поступают при этом далеко не так, как делал Хольвек. Прежде всего облучение проводят в таких условиях, когда полностью исключено и непрямое действие лучей и восстановление. Конечно, такое далеко не всегда возможно. Для этого пригодны крупные молекулы, вирусы, бактериальные споры — словом, объекты, которые выдерживают полное обезвоживание и достаточно просты. Лучи тоже годятся не всякие. Применяют либо очень редко ионизирующие лучи (например, электроны высоких энергий), которые при каждом проходе через облучаемый объект оставят в нем не больше одной ионизации, либо, наоборот, очень густо ионизирующие (например, протоны), каждый проход которых оставляет не меньше одной ионизации. В первом случае с помощью несложных расчетов можно вычислить объем облучаемого объекта, во втором — его среднее поперечное сечение. А сопоставляя обе величины, нетрудно определить и форму изучаемого объекта.

Если все возможные помехи устранены, то метод дает очень точные результаты. Ведь их можно проверить. Совпадение получается отличное. Правда, широкого применения метод не получил, так как появился могучий конкурент — электронный микроскоп, который дает все же более однозначные результаты и обычно применять его не трудно. Но и теперь иногда микрометрию с помощью ионизирующих лучей с успехом применяют на практике.

Впрочем, радиационная ультрамикрометрия отнюдь не единственный и далеко не самый важный путь использования радиобиологии в качестве средства для научных исследований. И это не удивительно. Ведь ионизирующие лучи не знают преград и проникают в любые объекты на любую глубину. И в отличие от химических веществ, вступающих «по дороге» в реакции и изменяющихся при этом, остаются всегда теми же самыми. Экспериментатор всегда точно знает, что проникло в изучаемый объект и на какую глубину. Как же радиация служит науке?



Хотя мы и не всегда отдаем себе в этом отчет, но научное исследование состоит в сравнении. Иногда мы делаем это совершенно бессознательно. Например, описывая собаку, мы скорее всего упомянем о том, что у нее четыре ноги. Но ведь мы это делаем потому, что существуют животные, имеющие другое число ног (человек, птица, сороконожка) или даже вообще безногие (змея, инфузория). Если бы все живые существа были четвероногими, информация о том, что у собаки четыре ноги, оказалась бы излишней…

Или возьмем науку, о которой нам довольно много пришлось говорить в этой книге, — генетику. Если бы все особи данного вида не отличались друг от друга, не ломали бы люди с древнейших времен голову над вопросами: почему дети похожи на своих родителей, почему они наследуют их признаки так, а не эдак. И можно ручаться, что, если бы не было наследственной изменчивости организмов, не существовало бы и генетики, во всяком случае в той форме, в какой она возникла. А к чему сводятся методы генетической науки? Все к тем же сравнениям. Сравнивают признаки родителей и детей, братьев и сестер и т. д.

Метод созерцания применяется в любой науке лишь в ее младенческом возрасте. Как только наука становится наукой, ученые начинают экспериментировать, то есть как-то изменять нормальные структуры, нормальный ход жизненных процессов. Изучая работу измененного организма, познают их законы в норме. Отсюда ясно, каким незаменимым средством для исследователя становятся ионизирующие лучи. Ведь это — тончайший скальпель, с помощью которого можно куда угодно проникнуть и что угодно изменить.

Кроме того, ионизирующие излучения широко применяются в качестве исследовательского средства и вне связи с их биологическим действием, то есть вне прямой связи с радиобиологией. Рентгенография, электронография, рентгеноструктурный анализ, метод меченых атомов… И хотя сами по себе эти методы не радиобиологические, но при использовании их на живых объектах, приходится привлекать и радиобиологию. Ведь нужно знать, как сами методы влияют на изучаемый объект.

О методе меченых атомов придется сказать несколько слов, хотя с радиобиологией он связан лишь косвенно.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

Логика случая. О природе и происхождении биологической эволюции
Логика случая. О природе и происхождении биологической эволюции

В этой амбициозной книге Евгений Кунин освещает переплетение случайного и закономерного, лежащих в основе самой сути жизни. В попытке достичь более глубокого понимания взаимного влияния случайности и необходимости, двигающих вперед биологическую эволюцию, Кунин сводит воедино новые данные и концепции, намечая при этом дорогу, ведущую за пределы синтетической теории эволюции. Он интерпретирует эволюцию как стохастический процесс, основанный на заранее непредвиденных обстоятельствах, ограниченный необходимостью поддержки клеточной организации и направляемый процессом адаптации. Для поддержки своих выводов он объединяет между собой множество концептуальных идей: сравнительную геномику, проливающую свет на предковые формы; новое понимание шаблонов, способов и непредсказуемости процесса эволюции; достижения в изучении экспрессии генов, распространенности белков и других фенотипических молекулярных характеристик; применение методов статистической физики для изучения генов и геномов и новый взгляд на вероятность самопроизвольного появления жизни, порождаемый современной космологией.Логика случая демонстрирует, что то понимание эволюции, которое было выработано наукой XX века, является устаревшим и неполным, и обрисовывает фундаментально новый подход — вызывающий, иногда противоречивый, но всегда основанный на твердых научных знаниях.

Евгений Викторович Кунин

Биология, биофизика, биохимия / Биология / Образование и наука
Энергия, секс, самоубийство. Митохондрии и смысл жизни
Энергия, секс, самоубийство. Митохондрии и смысл жизни

Испокон веков люди обращали взоры к звездам и размышляли, почему мы здесь и одни ли мы во Вселенной. Нам свойственно задумываться о том, почему существуют растения и животные, откуда мы пришли, кто были наши предки и что ждет нас впереди. Пусть ответ на главный вопрос жизни, Вселенной и вообще всего не 42, как утверждал когда-то Дуглас Адамс, но он не менее краток и загадочен — митохондрии.Они показывают нам, как возникла жизнь на нашей планете. Они объясняют, почему бактерии так долго царили на ней и почему эволюция, скорее всего, не поднялась выше уровня бактериальной слизи нигде во Вселенной. Они позволяют понять, как возникли первые сложные клетки и как земная жизнь взошла по лестнице восходящей сложности к вершинам славы. Они показывают нам, почему возникли теплокровные существа, стряхнувшие оковы окружающей среды; почему существуют мужчины и женщины, почему мы влюбляемся и заводим детей. Они говорят нам, почему наши дни в этом мире сочтены, почему мы стареем и умираем. Они могут подсказать нам лучший способ провести закатные годы жизни, избежав старости как обузы и проклятия. Может быть, митохондрии и не объясняют смысл жизни, но, по крайней мере, показывают, что она собой представляет. А разве можно понять смысл жизни, не зная, как она устроена?16+

Ник Лэйн

Биология, биофизика, биохимия / Биология / Образование и наука