В вышеупомянутых конструкциях, маленькая внутренняя лампа должна, по крайней мере, на первых стадиях, защищать от бомбардировки внешнюю, большую лампу. Я подумал, а как поведет себя в этой ситуации металлический сетчатый фильтр, и для этих целей были изготов- лены несколько ламп, изображенных на рис. 31. В сферу b была вмонтирована тонкая нить на кала (или электрод) на платиновой проволоке W,
проходящей через стеклянную ножку и выхо- дящая из сферы наружу. Нит ь накала/был а окружена металлическим ситом S. В процессе про- ведения экспериментов с такими лампами было обнаружено, что сито с широкими ячейками явно не оказывает ни малейшего воздействия на процесс бомбардировки сферы b. Когда ваку- ум был сильным, тень от сита ясно проецировалась на сферу, и последний нагревался за корот- кий период времени. В нескольких лампах сито S подсоединялось к платиновой проволоке, запаянной в стекло. Когда эту проволоку подсоединяли к другой клемме индукционной катуш- ки (в этом случае ЭД С поддерживали на низком уровне), или к изолированной пластине, то бомбардировка внешнего шара уменьшалась. Когда брали сито с мелкими ячейками, бомбарди- ровка большого шара также уменьшалась. Но даже тогда, когда создавалось еще большее раз- режение воздуха, а разность потенциалов трансформатора увеличивали, то увеличивалась интенсивность бомбардировки сферы и нагрев происходил быстрее, несмотря на то, что не бы- ло видно тени от сетки, вследствие меньших размеров ячеек. Но стеклянная трубка или другое плотное тело, расположенное вокруг нити накала, может полностью прекратить бомбардиров- ку и некоторое время внешняя сфера b будет оставаться совсем холодной. Конечно, когда стек- лянная трубка очень сильно нагрета, бомбардировка внешнего шара не останется незамеченной. Эксперимент с этими лампами показал, что скорость задействованных молекул или частиц должна быть значительной (хотя она совершенно незначительна по сравнению со световыми частицами), в противном случае трудно понять, как они могут проходить через тонкую метал- лическую сетку без воздействия со стороны последней. Дел о в том, что было обнаружено, что такие мелкие частички как атомы не могут воздействовать непосредственно на соизмеримом расстоянии. Что касается скорости задействованных атомов, то лорд Кельвин недавно оценил ее примерно в один километр в секунду, или около того в обычной лампе Крукса. Поскольку разность потенциалов, получаемая от катушки с пробойным разрядом, намного выше, чем по- лучаемая от обычной катушки, то и скорость частиц в лампе или другом источнике света долж- на быть больше, когда они работают от такой катушки. Предположим, что скорость частиц составляет около пяти километров в секунду и постоянна на всем протяжении траектории, как это и должно происходить в сосуде с сильным разрежением воздуха. Затем, если изменения электризации электродов будет происходить с частотой около пяти миллионов раз в секунду, то наибольшее расстояние между частицами, удаляющимися от электрода, будет равняться одно- му миллиметру. Если они могли бы взаимодействовать на таком расстоянии, то обмен в наэле- ктризованной среде, или среди атомов был бы очень медленным, и не было бы бомбардировки внешней лампы. По крайне мере, так должно быть, если действие электрода на атомы разре- женного газа будет таким, как при электризации тел, которые можем наблюдать. Горячее тело внутри вакуумной лампы всегда производит атомную бомбардировку, но оно не имеет опреде- ленного ритма, необходимого для того, чтобы его молекулы могли совершать колебания всех ви- дов.Если лампа, содержащая кнопку или нить накала, с большой осторожностью разрежена максимально сильно и используется лучшими специалистами, то можно наблюдать, что разряд сначала не может произойти, но спустя некоторое время, вероятно, когда в лампе образуется некоторый заряд, разряд все-таки происходит и электрод накаляется.
Фактически получается, что чем выше разреженность газа, тем легче получить белый накал. Кажется, что нет других причин, по которым накаливание не могло бы быть приписано этим случаям, за исключением бомбардировки или похожего действия разреженного газа или частиц другого вещества. Но играет ли важную роль то, что воздух в лампе разрежают с большими предосторожностями? Тогда допустим, что вакуум в лампе идеален, если это является ключевым вопросом. Является ли среда, заполняющая все пространство сплошной или атомной? Если она имеет атомную структуру, то когда происходит нагревание электрода, или нити накала в вакууме, сосуд может оказаться слишком большим для эфирной бомбардировки. Нагревание проводника вообще, зависит от того, какой ток, высокой частоты или с высокой разностью потенциалов, имеет место, и будет подвергаться изменениям со стороны среды. Кроме того, существуют такж е кожные эффекты, т. е. явное увеличение омического сопротивления и т. д., что допускает, по крайней мере, различные объяснения.